BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38891253)

  • 1. Comparative Genome-Wide Identification of the
    Ye Z; Mao D; Wang Y; Deng H; Liu X; Zhang T; Han Z; Zhang X
    Plants (Basel); 2024 May; 13(11):. PubMed ID: 38891253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and expression of fructose-1,6-bisphosphate aldolase genes and their relations to oil content in developing seeds of tea oil tree (Camellia oleifera).
    Zeng Y; Tan X; Zhang L; Jiang N; Cao H
    PLoS One; 2014; 9(9):e107422. PubMed ID: 25215538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seed Transcriptomics Analysis in Camellia oleifera Uncovers Genes Associated with Oil Content and Fatty Acid Composition.
    Lin P; Wang K; Zhou C; Xie Y; Yao X; Yin H
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29301285
    [No Abstract]   [Full Text] [Related]  

  • 4. Transcriptome analysis of the oil-rich tea plant, Camellia oleifera, reveals candidate genes related to lipid metabolism.
    Xia EH; Jiang JJ; Huang H; Zhang LP; Zhang HB; Gao LZ
    PLoS One; 2014; 9(8):e104150. PubMed ID: 25136805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of miRNA-mRNA Regulatory Modules Involved in Lipid Metabolism and Seed Development in a Woody Oil Tree (
    Wu B; Ruan C; Shah AH; Li D; Li H; Ding J; Li J; Du W
    Cells; 2021 Dec; 11(1):. PubMed ID: 35011633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study on fruit development and oil synthesis in two cultivars of Camellia oleifera.
    Zhang F; Li Z; Zhou J; Gu Y; Tan X
    BMC Plant Biol; 2021 Jul; 21(1):348. PubMed ID: 34301189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative transcriptomic analysis of high- and low-oil
    Wu B; Ruan C; Han P; Ruan D; Xiong C; Ding J; Liu S
    3 Biotech; 2019 Jul; 9(7):257. PubMed ID: 31192082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global Transcriptome and Correlation Analysis Reveal Cultivar-Specific Molecular Signatures Associated with Fruit Development and Fatty Acid Determination in
    Peng S; Lu J; Zhang Z; Ma L; Liu C; Chen Y
    Int J Genomics; 2020; 2020():6162802. PubMed ID: 32953873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The reference genome of camellia chekiangoleosa provides insights into camellia evolution and tea oil biosynthesis.
    Shen TF; Huang B; Xu M; Zhou PY; Ni ZX; Gong C; Wen Q; Cao FL; Xu LA
    Hortic Res; 2022 Jan; 9():. PubMed ID: 35039868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic relationships and low diversity among the tea-oil
    Qi H; Sun X; Yan W; Ye H; Chen J; Yu J; Jun D; Wang C; Xia T; Chen X; Li D; Zheng D
    Front Plant Sci; 2022; 13():996731. PubMed ID: 36247558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complementary transcriptome and proteome profiling in the mature seeds of Camellia oleifera from Hainan Island.
    Ye Z; Wu Y; Ul Haq Muhammad Z; Yan W; Yu J; Zhang J; Yao G; Hu X
    PLoS One; 2020; 15(2):e0226888. PubMed ID: 32027663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic and phytochemical analysis of the biosynthesis of characteristic constituents in tea (Camellia sinensis) compared with oil tea (Camellia oleifera).
    Tai Y; Wei C; Yang H; Zhang L; Chen Q; Deng W; Wei S; Zhang J; Fang C; Ho C; Wan X
    BMC Plant Biol; 2015 Aug; 15():190. PubMed ID: 26245644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatty acid and sterol composition of tea seed oils: Their comparison by the "FancyTiles" approach.
    Wang X; Zeng Q; Verardo V; Contreras MDM
    Food Chem; 2017 Oct; 233():302-310. PubMed ID: 28530579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Transcriptomic Analysis Reveals Regulatory Mechanisms of Theanine Synthesis in Tea (
    Tai Y; Ling C; Wang H; Yang L; She G; Wang C; Yu S; Chen W; Liu C; Wan X
    J Agric Food Chem; 2019 Sep; 67(36):10235-10244. PubMed ID: 31436988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First report of Neopestalotiopsis protearum causing seed rot on Camellia oleifera in China.
    Tang J; Du Y; Lai L; Yang Q
    Plant Dis; 2021 Jun; ():. PubMed ID: 34156272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Full-Length Transcriptome from
    Gong W; Song Q; Ji K; Gong S; Wang L; Chen L; Zhang J; Yuan D
    J Agric Food Chem; 2020 Dec; 68(49):14670-14683. PubMed ID: 33249832
    [No Abstract]   [Full Text] [Related]  

  • 17. Association Genetics Identifies Single Nucleotide Polymorphisms Related to Kernel Oil Content and Quality in Camellia oleifera.
    Lin P; Yin H; Yan C; Yao X; Wang K
    J Agric Food Chem; 2019 Mar; 67(9):2547-2562. PubMed ID: 30758959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromosome-level genome of Camellia lanceoleosa provides a valuable resource for understanding genome evolution and self-incompatibility.
    Gong W; Xiao S; Wang L; Liao Z; Chang Y; Mo W; Hu G; Li W; Zhao G; Zhu H; Hu X; Ji K; Xiang X; Song Q; Yuan D; Jin S; Zhang L
    Plant J; 2022 May; 110(3):881-898. PubMed ID: 35306701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatty acids and nutritional components of the seed oil from Wangmo red ball Camellia oleifera grown in the low-heat valley of Guizhou, China.
    Long L; Gao C; Qiu J; Yang L; Wei H; Zhou Y
    Sci Rep; 2022 Oct; 12(1):16554. PubMed ID: 36192507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative transcriptomic analysis reveals genes related to the rapid accumulation of oleic acid in Camellia chekiangoleosa, an oil tea plant with early maturity and large fruit.
    Wang Z; Huang B; Ye J; He Y; Tang S; Wang H; Wen Q
    Plant Physiol Biochem; 2022 Jan; 171():95-104. PubMed ID: 34974387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.