These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 38891277)

  • 1. The Role of Plant Ubiquitin-like Modifiers in the Formation of Salt Stress Tolerance.
    Dabravolski SA; Isayenkov SV
    Plants (Basel); 2024 May; 13(11):. PubMed ID: 38891277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Arbuscular Mycorrhizal Fungi in Regulating Growth, Enhancing Productivity, and Potentially Influencing Ecosystems under Abiotic and Biotic Stresses.
    Wahab A; Muhammad M; Munir A; Abdi G; Zaman W; Ayaz A; Khizar C; Reddy SPP
    Plants (Basel); 2023 Aug; 12(17):. PubMed ID: 37687353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unfolding molecular switches for salt stress resilience in soybean: recent advances and prospects for salt-tolerant smart plant production.
    Feng C; Gao H; Zhou Y; Jing Y; Li S; Yan Z; Xu K; Zhou F; Zhang W; Yang X; Hussain MA; Li H
    Front Plant Sci; 2023; 14():1162014. PubMed ID: 37152141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harnessing Phytohormones: Advancing Plant Growth and Defence Strategies for Sustainable Agriculture.
    Ali J; Mukarram M; Ojo J; Dawam N; Riyazuddin R; Ghramh HA; Khan KA; Chen R; Kurjak D; Bayram A
    Physiol Plant; 2024; 176(3):e14307. PubMed ID: 38705723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing salt stress-resilient crops: Current progress and future challenges.
    Liang X; Li J; Yang Y; Jiang C; Guo Y
    J Integr Plant Biol; 2024 Mar; 66(3):303-329. PubMed ID: 38108117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drought and heat stress: insights into tolerance mechanisms and breeding strategies for pigeonpea improvement.
    Bakala HS; Devi J; Singh G; Singh I
    Planta; 2024 Apr; 259(5):123. PubMed ID: 38622376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hormonal crosstalk in regulating salinity stress tolerance in graminaceous crops.
    Choudhary P; Pramitha L; Rana S; Verma S; Aggarwal PR; Muthamilarasan M
    Physiol Plant; 2021 Dec; 173(4):1587-1596. PubMed ID: 34537966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in Understanding the Physiological and Molecular Responses of Sugar Beet to Salt Stress.
    Lv X; Chen S; Wang Y
    Front Plant Sci; 2019; 10():1431. PubMed ID: 31781145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncovering the mechanisms of salicylic acid-mediated abiotic stress tolerance in horticultural crops.
    Yang H; Fang R; Luo L; Yang W; Huang Q; Yang C; Hui W; Gong W; Wang J
    Front Plant Sci; 2023; 14():1226041. PubMed ID: 37701800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heavy metals and arsenic stress in food crops: Elucidating antioxidative defense mechanisms in hyperaccumulators for food security, agricultural sustainability, and human health.
    Rai PK; Sonne C; Kim KH
    Sci Total Environ; 2023 May; 874():162327. PubMed ID: 36813200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic Approaches to Uncover Salt Stress Response Mechanisms in Crops.
    Kausar R; Komatsu S
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate-resilient crops: Lessons from xerophytes.
    Chen X; Zhao C; Yun P; Yu M; Zhou M; Chen ZH; Shabala S
    Plant J; 2024 Mar; 117(6):1815-1835. PubMed ID: 37967090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in PGPR-mediated resilience toward interactive effects of drought and salt stress in plants.
    Al-Turki A; Murali M; Omar AF; Rehan M; Sayyed RZ
    Front Microbiol; 2023; 14():1214845. PubMed ID: 37829451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salt tolerance in Brassicaceae crops: physiological responses and molecular mechanisms.
    Wang T; Yang X; Fan Z; Wang Y
    Funct Plant Biol; 2023 Oct; 50(10):753-764. PubMed ID: 37591489
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Wang T; Yang X; Fan Z; Wang Y
    Funct Plant Biol; 2023 Dec; 50(12):1130. PubMed ID: 38051337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salinity Tolerance Mechanism of Economic Halophytes From Physiological to Molecular Hierarchy for Improving Food Quality.
    Xu C; Tang X; Shao H; Wang H
    Curr Genomics; 2016 Jun; 17(3):207-14. PubMed ID: 27252587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agroindustrial By-Products as a Source of Biostimulants Enhancing Responses to Abiotic Stress of Horticultural Crops.
    Zuzunaga-Rosas J; Boscaiu M; Vicente O
    Int J Mol Sci; 2024 Mar; 25(6):. PubMed ID: 38542496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melatonin-Mediated Molecular Responses in Plants: Enhancing Stress Tolerance and Mitigating Environmental Challenges in Cereal Crop Production.
    Muhammad I; Ahmad S; Shen W
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38674136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Mechanisms of Autophagy Regulation in Plants and Their Applications in Agriculture.
    Cao JJ; Liu CX; Shao SJ; Zhou J
    Front Plant Sci; 2020; 11():618944. PubMed ID: 33664753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic modification strategies for enhancing plant resilience to abiotic stresses in the context of climate change.
    KhokharVoytas A; Shahbaz M; Maqsood MF; Zulfiqar U; Naz N; Iqbal UZ; Sara M; Aqeel M; Khalid N; Noman A; Zulfiqar F; Al Syaad KM; AlShaqhaa MA
    Funct Integr Genomics; 2023 Aug; 23(3):283. PubMed ID: 37642792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.