These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38891309)

  • 1. Canopy Architecture and Sun Exposure Influence Berry Cluster-Water Relations in the Grapevine Variety Muscat of Alexandria.
    Zarrouk O; Pinto C; Alarcón MV; Flores-Roco A; Santos L; David TS; Amancio S; Lopes CM; Carvalho LC
    Plants (Basel); 2024 May; 13(11):. PubMed ID: 38891309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water Transport Properties of the Grape Pedicel during Fruit Development: Insights into Xylem Anatomy and Function Using Microtomography.
    Knipfer T; Fei J; Gambetta GA; McElrone AJ; Shackel KA; Matthews MA
    Plant Physiol; 2015 Aug; 168(4):1590-602. PubMed ID: 26077763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flowers regulate the growth and vascular development of the inflorescence rachis in Vitis vinifera L.
    Gourieroux AM; McCully ME; Holzapfel BP; Scollary GR; Rogiers SY
    Plant Physiol Biochem; 2016 Nov; 108():519-529. PubMed ID: 27596018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ripening grape berries remain hydraulically connected to the shoot.
    Keller M; Smith JP; Bondada BR
    J Exp Bot; 2006; 57(11):2577-87. PubMed ID: 16868045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of artificial canopy shading on vegetative growth and ripening processes of cv. Nero d'Avola (
    Miccichè D; de Rosas MI; Ferro MV; Di Lorenzo R; Puccio S; Pisciotta A
    Front Plant Sci; 2023; 14():1210574. PubMed ID: 37822339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vascular development of the grapevine (Vitis vinifera L.) inflorescence rachis in response to flower number, plant growth regulators and defoliation.
    Gourieroux AM; Holzapfel BP; McCully ME; Scollary GR; Rogiers SY
    J Plant Res; 2017 Sep; 130(5):873-883. PubMed ID: 28421372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discharge of surplus phloem water may be required for normal grape ripening.
    Zhang Y; Keller M
    J Exp Bot; 2017 Jan; 68(3):585-595. PubMed ID: 28082510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grape Ripening Is Regulated by Deficit Irrigation/Elevated Temperatures According to Cluster Position in the Canopy.
    Zarrouk O; Brunetti C; Egipto R; Pinheiro C; Genebra T; Gori A; Lopes CM; Tattini M; Chaves MM
    Front Plant Sci; 2016; 7():1640. PubMed ID: 27895648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional xylem in the post-veraison grape berry.
    Bondada BR; Matthews MA; Shackel KA
    J Exp Bot; 2005 Nov; 56(421):2949-57. PubMed ID: 16207748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vascular Connections Into the Grape Berry: The Link of Structural Investment to Seededness.
    Xiao Z; Chin S; White RG; Gourieroux AM; Pagay V; Tyerman SD; Schmidtke LM; Rogiers SY
    Front Plant Sci; 2021; 12():662433. PubMed ID: 33936151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of isohydric and anisohydric Vitis vinifera L. cultivars reveals a fine balance between hydraulic resistances, driving forces and transpiration in ripening berries.
    Scharwies JD; Tyerman SD
    Funct Plant Biol; 2017 Feb; 44(3):324-338. PubMed ID: 32480567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid shoot-to-root signalling regulates root hydraulic conductance via aquaporins.
    Vandeleur RK; Sullivan W; Athman A; Jordans C; Gilliham M; Kaiser BN; Tyerman SD
    Plant Cell Environ; 2014 Feb; 37(2):520-38. PubMed ID: 23926961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The amino acid distribution in rachis xylem sap and phloem exudate of Vitis vinifera 'Cabernet Sauvignon' bunches.
    Gourieroux AM; Holzapfel BP; Scollary GR; McCully ME; Canny MJ; Rogiers SY
    Plant Physiol Biochem; 2016 Aug; 105():45-54. PubMed ID: 27082989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison.
    Pilati S; Perazzolli M; Malossini A; Cestaro A; Demattè L; Fontana P; Dal Ri A; Viola R; Velasco R; Moser C
    BMC Genomics; 2007 Nov; 8():428. PubMed ID: 18034875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adapting wine grape production to climate change through canopy architecture manipulation and irrigation in warm climates.
    Yu R; Torres N; Tanner JD; Kacur SM; Marigliano LE; Zumkeller M; Gilmer JC; Gambetta GA; Kurtural SK
    Front Plant Sci; 2022; 13():1015574. PubMed ID: 36311062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of rachis cell viability is associated with ripening disorders in grapes.
    Hall GE; Bondada BR; Keller M
    J Exp Bot; 2011 Jan; 62(3):1145-53. PubMed ID: 21071679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Ascophyllum nodosum extract on Vitis vinifera: Consequences on plant physiology, grape quality and secondary metabolism.
    Salvi L; Brunetti C; Cataldo E; Niccolai A; Centritto M; Ferrini F; Mattii GB
    Plant Physiol Biochem; 2019 Jun; 139():21-32. PubMed ID: 30875532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal Ranges and Thresholds of Grape Berry Solar Radiation for Flavonoid Biosynthesis in Warm Climates.
    Torres N; Martínez-Lüscher J; Porte E; Kurtural SK
    Front Plant Sci; 2020; 11():931. PubMed ID: 32714350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lateral shoots removal has little effect on berry growth of grapevine (Vitis vinifera L.) 'Riesling' in cool climate.
    Ye Q; Wang H; Li H
    Sci Rep; 2022 Sep; 12(1):15980. PubMed ID: 36155427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomic analysis of temporal shifts in berry development between two grapevine cultivars of the Pinot family reveals potential genes controlling ripening time.
    Theine J; Holtgräwe D; Herzog K; Schwander F; Kicherer A; Hausmann L; Viehöver P; Töpfer R; Weisshaar B
    BMC Plant Biol; 2021 Jul; 21(1):327. PubMed ID: 34233614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.