These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38891389)

  • 1. Identification of Pepper Leaf Diseases Based on TPSAO-AMWNet.
    Wan L; Zhu W; Dai Y; Zhou G; Chen G; Jiang Y; Zhu M; He M
    Plants (Basel); 2024 Jun; 13(11):. PubMed ID: 38891389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A High-Precision Identification Method for Maize Leaf Diseases and Pests Based on LFMNet under Complex Backgrounds.
    Liu J; He C; Jiang Y; Wang M; Ye Z; He M
    Plants (Basel); 2024 Jul; 13(13):. PubMed ID: 38999667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research of segmentation recognition of small disease spots on apple leaves based on hybrid loss function and CBAM.
    Zhang X; Li D; Liu X; Sun T; Lin X; Ren Z
    Front Plant Sci; 2023; 14():1175027. PubMed ID: 37346136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CPD-CCNN: classification of pepper disease using a concatenation of convolutional neural network models.
    Bezabh YA; Salau AO; Abuhayi BM; Mussa AA; Ayalew AM
    Sci Rep; 2023 Sep; 13(1):15581. PubMed ID: 37731029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of leaf diseases in field crops based on improved ShuffleNetV2.
    Zhou H; Chen J; Niu X; Dai Z; Qin L; Ma L; Li J; Su Y; Wu Q
    Front Plant Sci; 2024; 15():1342123. PubMed ID: 38529064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant leaf disease recognition based on improved SinGAN and improved ResNet34.
    Chen J; Hu H; Yang J
    Front Artif Intell; 2024; 7():1414274. PubMed ID: 38978997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A lightweight CNN model for pepper leaf disease recognition in a human palm background.
    Fu Y; Guo L; Huang F
    Heliyon; 2024 Jun; 10(12):e33447. PubMed ID: 39027426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EfficientRMT-Net-An Efficient ResNet-50 and Vision Transformers Approach for Classifying Potato Plant Leaf Diseases.
    Shaheed K; Qureshi I; Abbas F; Jabbar S; Abbas Q; Ahmad H; Sajid MZ
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CASM-AMFMNet: A Network Based on Coordinate Attention Shuffle Mechanism and Asymmetric Multi-Scale Fusion Module for Classification of Grape Leaf Diseases.
    Suo J; Zhan J; Zhou G; Chen A; Hu Y; Huang W; Cai W; Hu Y; Li L
    Front Plant Sci; 2022; 13():846767. PubMed ID: 35685012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient agricultural pest classification using vision transformer with hybrid pooled multihead attention.
    Saranya T; Deisy C; Sridevi S
    Comput Biol Med; 2024 Jul; 177():108584. PubMed ID: 38788371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pepper leaf disease recognition based on enhanced lightweight convolutional neural networks.
    Dai M; Sun W; Wang L; Dorjoy MMH; Zhang S; Miao H; Han L; Zhang X; Wang M
    Front Plant Sci; 2023; 14():1230886. PubMed ID: 37621882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MCCM: multi-scale feature extraction network for disease classification and recognition of chili leaves.
    Li D; Zhang C; Li J; Li M; Huang M; Tang Y
    Front Plant Sci; 2024; 15():1367738. PubMed ID: 38863551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of plant leaf diseases by deep learning based on channel attention and channel pruning.
    Chen R; Qi H; Liang Y; Yang M
    Front Plant Sci; 2022; 13():1023515. PubMed ID: 36438120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic sleep staging by a hybrid model based on deep 1D-ResNet-SE and LSTM with single-channel raw EEG signals.
    Li W; Gao J
    PeerJ Comput Sci; 2023; 9():e1561. PubMed ID: 37810362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early stage black pepper leaf disease prediction based on transfer learning using ConvNets.
    Kini AS; Prema KV; Pai SN
    Sci Rep; 2024 Jan; 14(1):1404. PubMed ID: 38228767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Fully Automatic Glioma Segmentation Algorithm of Magnetic Resonance Imaging Based on 3D-UNet With More Global Contextual Feature Extraction: An Improvement on Insufficient Extraction of Global Features].
    Tian H; Wang Y; Ji Y; Rahman MM
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2024 Mar; 55(2):447-454. PubMed ID: 38645864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An efficient deep learning model for tomato disease detection.
    Wang X; Liu J
    Plant Methods; 2024 May; 20(1):61. PubMed ID: 38725014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BAF-Net: Bidirectional attention fusion network
    Fang J; Jiang H; Zhang S; Sun L; Hu X; Liu J; Gong M; Liu H; Fu Y
    Front Plant Sci; 2023; 14():1123410. PubMed ID: 37051074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. YOLOv8-RMDA: Lightweight YOLOv8 Network for Early Detection of Small Target Diseases in Tea.
    Ye R; Shao G; He Y; Gao Q; Li T
    Sensors (Basel); 2024 May; 24(9):. PubMed ID: 38733002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CCW-YOLOv5: A forward-looking sonar target method based on coordinate convolution and modified boundary frame loss.
    Sun Y; Yin B
    PLoS One; 2024; 19(6):e0300976. PubMed ID: 38829868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.