BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38891539)

  • 1. Improving Pore Characteristics, Mechanical Properties and Thermal Performances of Near-Net Shape Manufacturing Phenolic Resin Aerogels.
    Sha R; Dai J; Wang B; Sha J
    Polymers (Basel); 2024 Jun; 16(11):. PubMed ID: 38891539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose Diacetate Aerogels with Low Drying Shrinkage, High-Efficient Thermal Insulation, and Superior Mechanical Strength.
    Zhang S; Lu K; Hu Y; Xu G; Wang J; Liao Y; Yu S
    Gels; 2024 Mar; 10(3):. PubMed ID: 38534628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monolithic carbon aerogels within foam framework for high-temperature thermal insulation and organics absorption.
    Wu K; Cao J; Qian Z; Luo Y; Niu B; Zhang Y; Long D
    J Colloid Interface Sci; 2022 Jul; 618():259-269. PubMed ID: 35339962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrahigh-strength carbon aerogels for high temperature thermal insulation.
    Wu K; Zhou Q; Cao J; Qian Z; Niu B; Long D
    J Colloid Interface Sci; 2022 Mar; 609():667-675. PubMed ID: 34823850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ambient Pressure Drying to Construct Cellulose Acetate/Benzoxazine Hybrid Aerogels with Flame Retardancy, Excellent Thermal Stability, and Superior Mechanical Strength Resistance to Cryogenic Temperature.
    Zhang S; Wang Z; Hu Y; Ji H; Xiao Y; Wang J; Xu G; Ding F
    Biomacromolecules; 2022 Dec; 23(12):5056-5064. PubMed ID: 36331293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double-Network MK Resin-Modified Silica Aerogels for High-Temperature Thermal Insulation.
    Xu L; Zhu W; Chen Z; Su D
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):44238-44247. PubMed ID: 37672731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the comprehensive properties of chitosan-based thermal insulation aerogels by introducing a biobased epoxy thermoset to form an anisotropic honeycomb-layered structure.
    Zhang C; Song S; Cao Q; Li J; Liu Q; Zhang S; Jian X; Weng Z
    Int J Biol Macromol; 2023 Aug; 246():125616. PubMed ID: 37391003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ambient-Dried, Ultra-high Strength, Low Thermal Conductivity, High Char Residual Rate F-type Polybenzoxazine Aerogel.
    Qin G; Jiang S; Zhang H; Qin S; Wu H; Zhang F; Zhang G
    ACS Omega; 2022 Aug; 7(30):26116-26122. PubMed ID: 35936395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compressible, Flame-Resistant and Thermally Insulating Fiber-Reinforced Polybenzoxazine Aerogel Composites.
    Xiao Y; Li L; Liu F; Zhang S; Feng J; Jiang Y; Feng J
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32580420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Konjac glucomannan-based aerogels with excellent thermal stability and flame retardancy for thermal insulation application.
    Deng P; Liu X; Li Y; Zhang YF; Wu K; Jiang F
    Int J Biol Macromol; 2024 Jan; 254(Pt 1):127814. PubMed ID: 37918590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compressible, Thermally Insulating, and Fire Retardant Aerogels through Self-Assembling Silk Fibroin Biopolymers Inside a Silica Structure-An Approach towards 3D Printing of Aerogels.
    Maleki H; Montes S; Hayati-Roodbari N; Putz F; Huesing N
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22718-22730. PubMed ID: 29864277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastic Aerogels of Cellulose Nanofibers@Metal-Organic Frameworks for Thermal Insulation and Fire Retardancy.
    Zhou S; Apostolopoulou-Kalkavoura V; Tavares da Costa MV; Bergström L; Strømme M; Xu C
    Nanomicro Lett; 2019 Dec; 12(1):9. PubMed ID: 34138073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manufacturing silica aerogel and cryogel through ambient pressure and freeze drying.
    Di Luigi M; Guo Z; An L; Armstrong JN; Zhou C; Ren S
    RSC Adv; 2022 Jul; 12(33):21213-21222. PubMed ID: 35975055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon Foam-Reinforced Polyimide-Based Carbon Aerogel Composites Prepared via Co-Carbonization as Insulation Material.
    Zheng Z; Liang G; Li L; Liu J; Wang X; Sun Y; Li K
    Gels; 2022 May; 8(5):. PubMed ID: 35621606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrahigh-strength silicone aerogels reinforced by an armor-like epoxy framework via a temperature-controlled sequential reaction strategy.
    Yan A; Luo Y; Tian H; Pan H; Cao Y; Niu B; Zhang Y; Long D
    J Colloid Interface Sci; 2024 Jun; 663():665-673. PubMed ID: 38430836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile Synthesis and Properties of Highly Porous Quartz Fiber-Reinforced Phenolic Resin Composites with High Strength.
    Tao X; Wan Y; Zhang R; Zhang Y; Wang Y; Yu X; Wang M
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultralight and Hydrophobic Palygorskite-based Aerogels with Prominent Thermal Insulation and Flame Retardancy.
    Jin H; Zhou X; Xu T; Dai C; Gu Y; Yun S; Hu T; Guan G; Chen J
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11815-11824. PubMed ID: 32092256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermally Insulating SiO
    Zhao C; Qiao F; Ji J; Deng S; Qi H
    Langmuir; 2023 Jul; 39(27):9468-9475. PubMed ID: 37382911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanically Strong and Thermally Stable Chemical Cross-Linked Polyimide Aerogels for Thermal Insulator.
    Zheng S; Jiang L; Chang F; Zhang C; Ma N; Liu X
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36308398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cogel Strategy for the Preparation of a "Thorn"-Like Porous Halloysite/Gelatin Composite Aerogel with Excellent Mechanical Properties and Thermal Insulation.
    Zhao F; Liu H; Li H; Cao Y; Hua X; Ge S; He Y; Jiang C; He D
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17763-17773. PubMed ID: 35384643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.