These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 3889172)

  • 1. The interaction of Chlamydia trachomatis with host cells: ultrastructural studies of the mechanism of release of a biovar II strain from HeLa 229 cells.
    Todd WJ; Caldwell HD
    J Infect Dis; 1985 Jun; 151(6):1037-44. PubMed ID: 3889172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective translocation of annexins during intracellular redistribution of Chlamydia trachomatis in HeLa and McCoy cells.
    Majeed M; Ernst JD; Magnusson KE; Kihlström E; Stendahl O
    Infect Immun; 1994 Jan; 62(1):126-34. PubMed ID: 8262618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlamydia trachomatis uses host cell dynein to traffic to the microtubule-organizing center in a p50 dynamitin-independent process.
    Grieshaber SS; Grieshaber NA; Hackstadt T
    J Cell Sci; 2003 Sep; 116(Pt 18):3793-802. PubMed ID: 12902405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Type III Secretion Effector CteG Mediates Host Cell Lytic Exit of
    Pereira IS; Pais SV; Borges V; Borrego MJ; Gomes JP; Mota LJ
    Front Cell Infect Microbiol; 2022; 12():902210. PubMed ID: 35903198
    [No Abstract]   [Full Text] [Related]  

  • 5. Growth of Chlamydia trachomatis in enucleated cells.
    Perara E; Yen TS; Ganem D
    Infect Immun; 1990 Nov; 58(11):3816-8. PubMed ID: 2228252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlamydial Lytic Exit from Host Cells Is Plasmid Regulated.
    Yang C; Starr T; Song L; Carlson JH; Sturdevant GL; Beare PA; Whitmire WM; Caldwell HD
    mBio; 2015 Nov; 6(6):e01648-15. PubMed ID: 26556273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Murine Cervicovaginal Infection by Chlamydial Strains: Identification of Extrusions Shed
    Shaw JH; Behar AR; Snider TA; Allen NA; Lutter EI
    Front Cell Infect Microbiol; 2017; 7():18. PubMed ID: 28217555
    [No Abstract]   [Full Text] [Related]  

  • 8. Host nectin-1 is required for efficient Chlamydia trachomatis serovar E development.
    Hall JV; Sun J; Slade J; Kintner J; Bambino M; Whittimore J; Schoborg RV
    Front Cell Infect Microbiol; 2014; 4():158. PubMed ID: 25414835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vesicular interactions of the Chlamydia trachomatis inclusion are determined by chlamydial early protein synthesis rather than route of entry.
    Scidmore MA; Rockey DD; Fischer ER; Heinzen RA; Hackstadt T
    Infect Immun; 1996 Dec; 64(12):5366-72. PubMed ID: 8945589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlamydia trachomatis targets mitochondrial dynamics to promote intracellular survival and proliferation.
    Kurihara Y; Itoh R; Shimizu A; Walenna NF; Chou B; Ishii K; Soejima T; Fujikane A; Hiromatsu K
    Cell Microbiol; 2019 Jan; 21(1):e12962. PubMed ID: 30311994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perforin-2 restricts growth of Chlamydia trachomatis in macrophages.
    Fields KA; McCormack R; de Armas LR; Podack ER
    Infect Immun; 2013 Aug; 81(8):3045-54. PubMed ID: 23753625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane.
    Hackstadt T; Rockey DD; Heinzen RA; Scidmore MA
    EMBO J; 1996 Mar; 15(5):964-77. PubMed ID: 8605892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of host cell cytokinesis by Chlamydia trachomatis infection.
    Greene W; Zhong G
    J Infect; 2003 Jul; 47(1):45-51. PubMed ID: 12850162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maraviroc, celastrol and azelastine alter
    Kuratli J; Leonard CA; Nufer L; Marti H; Schoborg R; Borel N
    J Med Microbiol; 2020 Dec; 69(12):1351-1366. PubMed ID: 33180014
    [No Abstract]   [Full Text] [Related]  

  • 15. In contrast to Chlamydia trachomatis, Waddlia chondrophila grows in human cells without inhibiting apoptosis, fragmenting the Golgi apparatus, or diverting post-Golgi sphingomyelin transport.
    Dille S; Kleinschnitz EM; Kontchou CW; Nölke T; Häcker G
    Infect Immun; 2015 Aug; 83(8):3268-80. PubMed ID: 26056386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlamydia trachomatis utilizes the host cell microtubule network during early events of infection.
    Clausen JD; Christiansen G; Holst HU; Birkelund S
    Mol Microbiol; 1997 Aug; 25(3):441-9. PubMed ID: 9302007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polypeptide composition of Chlamydia trachomatis.
    Salari SH; Ward ME
    J Gen Microbiol; 1981 Apr; 123(2):197-207. PubMed ID: 7320696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological studies of the association of mitochondria with chlamydial inclusions and the fusion of chlamydial inclusions.
    Matsumoto A; Bessho H; Uehira K; Suda T
    J Electron Microsc (Tokyo); 1991 Oct; 40(5):356-63. PubMed ID: 1666645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell death, BAX activation, and HMGB1 release during infection with Chlamydia.
    Jungas T; Verbeke P; Darville T; Ojcius DM
    Microbes Infect; 2004 Nov; 6(13):1145-55. PubMed ID: 15488733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal proteomic profiling of Chlamydia trachomatis-infected HeLa-229 human cervical epithelial cells.
    Tan GM; Lim HJ; Yeow TC; Movahed E; Looi CY; Gupta R; Arulanandam BP; Abu Bakar S; Sabet NS; Chang LY; Wong WF
    Proteomics; 2016 May; 16(9):1347-60. PubMed ID: 27134121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.