These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 38891802)
1. Multi-Omics Analysis of a Chromosome Segment Substitution Line Reveals a New Regulation Network for Soybean Seed Storage Profile. Jong C; Yu Z; Zhang Y; Choe K; Uh S; Kim K; Jong C; Cha J; Kim M; Kim Y; Han X; Yang M; Xu C; Hu L; Chen Q; Liu C; Qi Z Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38891802 [TBL] [Abstract][Full Text] [Related]
2. An integrated omics analysis reveals molecular mechanisms that are associated with differences in seed oil content between Glycine max and Brassica napus. Zhang Z; Dunwell JM; Zhang YM BMC Plant Biol; 2018 Dec; 18(1):328. PubMed ID: 30514240 [TBL] [Abstract][Full Text] [Related]
3. Integrative omics analysis elucidates the genetic basis underlying seed weight and oil content in soybean. Yuan X; Jiang X; Zhang M; Wang L; Jiao W; Chen H; Mao J; Ye W; Song Q Plant Cell; 2024 May; 36(6):2160-2175. PubMed ID: 38412459 [TBL] [Abstract][Full Text] [Related]
4. Analysis of Soybean Somatic Embryogenesis Using Chromosome Segment Substitution Lines and Transcriptome Sequencing. Li SN; Cheng P; Bai YQ; Shi Y; Yu JY; Li RC; Zhou RN; Zhang ZG; Wu XX; Chen QS Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31752416 [TBL] [Abstract][Full Text] [Related]
5. Meta-analysis and transcriptome profiling reveal hub genes for soybean seed storage composition during seed development. Qi Z; Zhang Z; Wang Z; Yu J; Qin H; Mao X; Jiang H; Xin D; Yin Z; Zhu R; Liu C; Yu W; Hu Z; Wu X; Liu J; Chen Q Plant Cell Environ; 2018 Sep; 41(9):2109-2127. PubMed ID: 29486529 [TBL] [Abstract][Full Text] [Related]
6. A seed germination transcriptomic study contrasting two soybean genotypes that differ in terms of their tolerance to the deleterious impacts of elevated temperatures during seed fill. Gillman JD; Biever JJ; Ye S; Spollen WG; Givan SA; Lyu Z; Joshi T; Smith JR; Fritschi FB BMC Res Notes; 2019 Aug; 12(1):522. PubMed ID: 31426836 [TBL] [Abstract][Full Text] [Related]
7. Comparative transcriptome analysis of vegetable soybean grain discloses genes essential for grain quality. Wang B; Bu Y; Zhang G; Liu N; Feng Z; Gong Y BMC Plant Biol; 2024 Jun; 24(1):491. PubMed ID: 38825702 [TBL] [Abstract][Full Text] [Related]
8. Multi-omic analysis reveals the effects of interspecific hybridization on the synthesis of seed reserve polymers in a Triticum turgidum ssp. durum × Aegilops sharonensis amphidiploid. Hu Q; Liu J; Chen X; Guzmán C; Xu Q; Zhang Y; Chen Q; Tang H; Qi P; Deng M; Ma J; Chen G; Wei Y; Wang J; Zheng Y; Tu Y; Jiang Q BMC Genomics; 2024 Jun; 25(1):626. PubMed ID: 38902625 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome analysis reveals a critical role of CHS7 and CHS8 genes for isoflavonoid synthesis in soybean seeds. Dhaubhadel S; Gijzen M; Moy P; Farhangkhoee M Plant Physiol; 2007 Jan; 143(1):326-38. PubMed ID: 17098860 [TBL] [Abstract][Full Text] [Related]
10. Integrative analysis of metabolome and transcriptome reveals the improvements of seed quality in vegetable soybean (Glycine max (L.) Merr.). Chen Z; Zhong W; Zhou Y; Ji P; Wan Y; Shi S; Yang Z; Gong Y; Mu F; Chen S Phytochemistry; 2022 Aug; 200():113216. PubMed ID: 35487251 [TBL] [Abstract][Full Text] [Related]
11. Comparative Transcriptome Analysis of Developing Seeds and Silique Wall Reveals Dynamic Transcription Networks for Effective Oil Production in Shahid M; Cai G; Zu F; Zhao Q; Qasim MU; Hong Y; Fan C; Zhou Y Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31018533 [TBL] [Abstract][Full Text] [Related]
12. Natural variation in Fatty Acid 9 is a determinant of fatty acid and protein content. Qi Z; Guo C; Li H; Qiu H; Li H; Jong C; Yu G; Zhang Y; Hu L; Wu X; Xin D; Yang M; Liu C; Lv J; Wang X; Kong F; Chen Q Plant Biotechnol J; 2024 Mar; 22(3):759-773. PubMed ID: 37937736 [TBL] [Abstract][Full Text] [Related]
13. Deletions of the SACPD-C locus elevate seed stearic acid levels but also result in fatty acid and morphological alterations in nitrogen fixing nodules. Gillman JD; Stacey MG; Cui Y; Berg HR; Stacey G BMC Plant Biol; 2014 May; 14():143. PubMed ID: 24886084 [TBL] [Abstract][Full Text] [Related]
14. Temporal transcriptome profiling of developing seeds reveals a concerted gene regulation in relation to oil accumulation in Pongamia (Millettia pinnata). Huang J; Hao X; Jin Y; Guo X; Shao Q; Kumar KS; Ahlawat YK; Harry DE; Joshi CP; Zheng Y BMC Plant Biol; 2018 Jul; 18(1):140. PubMed ID: 29986660 [TBL] [Abstract][Full Text] [Related]
15. Identification of Soybean Genes Related to Soybean Seed Protein Content Based on Quantitative Trait Loci Collinearity Analysis. Huang S; Yu J; Li Y; Wang J; Wang X; Qi H; Xu M; Qin H; Yin Z; Mei H; Chang H; Gao H; Liu S; Zhang Z; Zhang S; Zhu R; Liu C; Wu X; Jiang H; Hu Z; Xin D; Chen Q; Qi Z J Agric Food Chem; 2019 Jan; 67(1):258-274. PubMed ID: 30525587 [TBL] [Abstract][Full Text] [Related]
16. Meta-Analyses of QTLs Associated with Protein and Oil Contents and Compositions in Soybean [Glycine max (L.) Merr.] Seed. Van K; McHale LK Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28587169 [TBL] [Abstract][Full Text] [Related]
17. Effects of type I Diacylglycerol O-acyltransferase (DGAT1) genes on soybean (Glycine max L.) seed composition. Torabi S; Sukumaran A; Dhaubhadel S; Johnson SE; LaFayette P; Parrott WA; Rajcan I; Eskandari M Sci Rep; 2021 Jan; 11(1):2556. PubMed ID: 33510334 [TBL] [Abstract][Full Text] [Related]
18. WGCNA Reveals Hub Genes and Key Gene Regulatory Pathways of the Response of Soybean to Infection by Niu J; Zhao J; Guo Q; Zhang H; Yue A; Zhao J; Yin C; Wang M; Du W Genes (Basel); 2024 Apr; 15(5):. PubMed ID: 38790195 [No Abstract] [Full Text] [Related]
19. Meta-Analysis and Multiomics of a Chromosome Segment Substitution Line Reveal Candidate Genes Associated with Seed Hardness in Soybean. Wang N; Feng S; Ma X; Chen Q; Liu C; Qi Z J Agric Food Chem; 2023 Nov; 71(44):16840-16854. PubMed ID: 37821458 [TBL] [Abstract][Full Text] [Related]
20. Comparative transcriptomic analysis provides insights into the genetic networks regulating oil differential production in oil crops. Chen J; Hu Y; Zhao T; Huang C; Chen J; He L; Dai F; Chen S; Wang L; Jin S; Zhang T BMC Biol; 2024 May; 22(1):110. PubMed ID: 38735918 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]