BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38891885)

  • 21. Modulation of the Anti-Tumor Efficacy of Photodynamic Therapy by Nitric Oxide.
    Girotti AW
    Cancers (Basel); 2016 Oct; 8(10):. PubMed ID: 27775600
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bystander Effects of Nitric Oxide in Cellular Models of Anti-Tumor Photodynamic Therapy.
    Bazak J; Korytowski W; Girotti AW
    Cancers (Basel); 2019 Oct; 11(11):. PubMed ID: 31661869
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cytoprotective role of nitric oxide in HepG2 cell apoptosis induced by hypocrellin B photodynamic treatment.
    Ji YY; Ma YJ; Wang JW
    J Photochem Photobiol B; 2016 Oct; 163():366-73. PubMed ID: 27619738
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antagonistic Effects of Endogenous Nitric Oxide in a Glioblastoma Photodynamic Therapy Model.
    Fahey JM; Emmer JV; Korytowski W; Hogg N; Girotti AW
    Photochem Photobiol; 2016 Nov; 92(6):842-853. PubMed ID: 27608331
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cytoprotective signaling associated with nitric oxide upregulation in tumor cells subjected to photodynamic therapy-like oxidative stress.
    Bhowmick R; Girotti AW
    Free Radic Biol Med; 2013 Apr; 57():39-48. PubMed ID: 23261943
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual roles of nitric oxide in the regulation of tumor cell response and resistance to photodynamic therapy.
    Rapozzi V; Della Pietra E; Bonavida B
    Redox Biol; 2015 Dec; 6():311-317. PubMed ID: 26319434
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bystander effect in photosensitized prostate cancer cells with a different grade of malignancy: The role of nitric oxide.
    Gani M; Xodo LE; Rapozzi V
    Nitric Oxide; 2022 Nov; 128():25-36. PubMed ID: 35970264
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Negative effects of tumor cell nitric oxide on anti-glioblastoma photodynamic therapy.
    Girotti AW; Fahey JM; Korytowski W
    J Cancer Metastasis Treat; 2020; 6():. PubMed ID: 33564720
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bystander effects of nitric oxide in anti-tumor photodynamic therapy.
    Bazak J; Fahey JM; Wawak K; Korytowski W; Girotti AW
    Cancer Cell Microenviron; 2017; 4(1):. PubMed ID: 29201944
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid upregulation of cytoprotective nitric oxide in breast tumor cells subjected to a photodynamic therapy-like oxidative challenge.
    Bhowmick R; Girotti AW
    Photochem Photobiol; 2011; 87(2):378-86. PubMed ID: 21143607
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Meta-tetrahydroxyphenyl chlorine mediated photodynamic therapy inhibits the migration and invasion of a nasopharyngeal carcinoma KJ-1 cell line.
    Wang CP; Lou PJ; Lo FY; Shieh MJ
    J Formos Med Assoc; 2014 Mar; 113(3):173-8. PubMed ID: 24630035
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitric oxide-elicited resistance to anti-glioblastoma photodynamic therapy.
    Girotti AW; Fahey JM; Korytowski W
    Cancer Drug Resist; 2020 3rd Quarter; 3(3):401-414. PubMed ID: 33073206
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dihydroartemisinin prompts amplification of photodynamic therapy-induced reactive oxygen species to exhaust Na/H exchanger 1-mediated glioma cells invasion and migration.
    Hou K; Liu J; Du J; Mi S; Ma S; Ba Y; Ji H; Li B; Hu S
    J Photochem Photobiol B; 2021 Jun; 219():112192. PubMed ID: 34000476
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of nitric oxide in the treatment of tumours with aminolaevulinic acid-induced photodynamic therapy.
    Reeves KJ; Reed MW; Brown NJ
    J Photochem Photobiol B; 2010 Dec; 101(3):224-32. PubMed ID: 20724176
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of iNOS as a novel effective targeted therapy against triple-negative breast cancer.
    Granados-Principal S; Liu Y; Guevara ML; Blanco E; Choi DS; Qian W; Patel T; Rodriguez AA; Cusimano J; Weiss HL; Zhao H; Landis MD; Dave B; Gross SS; Chang JC
    Breast Cancer Res; 2015 Feb; 17(1):25. PubMed ID: 25849745
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A photodynamic bifunctional conjugate for prostate cancer: an in vitro mechanistic study.
    Rapozzi V; Varchi G; Della Pietra E; Ferroni C; Xodo LE
    Invest New Drugs; 2017 Feb; 35(1):115-123. PubMed ID: 27726093
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cytoprotective induction of nitric oxide synthase in a cellular model of 5-aminolevulinic acid-based photodynamic therapy.
    Bhowmick R; Girotti AW
    Free Radic Biol Med; 2010 May; 48(10):1296-301. PubMed ID: 20138143
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Involvement of nitric oxide during phthalocyanine (Pc4) photodynamic therapy-mediated apoptosis.
    Gupta S; Ahmad N; Mukhtar H
    Cancer Res; 1998 May; 58(9):1785-8. PubMed ID: 9581812
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reduced photoreceptor damage after photodynamic therapy through blockade of nitric oxide synthase in a model of choroidal neovascularization.
    She H; Nakazawa T; Matsubara A; Hisatomi T; Young TA; Michaud N; Connolly E; Hafezi-Moghadam A; Gragoudas ES; Miller JW
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):2268-77. PubMed ID: 17460290
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is frequently upregulated in prostate cancer, and its overexpression conveys tumor growth and angiogenesis by metabolizing asymmetric dimethylarginine (ADMA).
    Reddy KRK; Dasari C; Duscharla D; Supriya B; Ram NS; Surekha MV; Kumar JM; Ummanni R
    Angiogenesis; 2018 Feb; 21(1):79-94. PubMed ID: 29150732
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.