BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38892128)

  • 1. Zebrafish Congenital Heart Disease Models: Opportunities and Challenges.
    Yang D; Jian Z; Tang C; Chen Z; Zhou Z; Zheng L; Peng X
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Zebrafish to Analyze the Genetic and Environmental Etiologies of Congenital Heart Defects.
    Shrestha R; Lieberth J; Tillman S; Natalizio J; Bloomekatz J
    Adv Exp Med Biol; 2020; 1236():189-223. PubMed ID: 32304074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional testing of a human
    Farr GH; Imani K; Pouv D; Maves L
    Dis Model Mech; 2018 Oct; 11(10):. PubMed ID: 30355621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Syndromic Congenital Heart Defects in Zebrafish.
    Grant MG; Patterson VL; Grimes DT; Burdine RD
    Curr Top Dev Biol; 2017; 124():1-40. PubMed ID: 28335857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zebrafish models in cardiac development and congenital heart birth defects.
    Tu S; Chi NC
    Differentiation; 2012 Jul; 84(1):4-16. PubMed ID: 22704690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inappropriate cathepsin K secretion promotes its enzymatic activation driving heart and valve malformation.
    Lu PN; Moreland T; Christian CJ; Lund TC; Steet RA; Flanagan-Steet H
    JCI Insight; 2020 Oct; 5(20):. PubMed ID: 33055423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel mutations of AXIN2 identified in a Chinese Congenital Heart Disease Cohort.
    Zhu MJ; Ma XY; Ding PC; Tang HF; Peng R; Lu L; Li PQ; Qiao B; Yang XY; Zheng YF; Wang HY; Gao YQ; Chen FS
    J Hum Genet; 2019 May; 64(5):427-435. PubMed ID: 30760879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interrogating congenital heart defects with noninvasive fetal echocardiography in a mouse forward genetic screen.
    Liu X; Francis R; Kim AJ; Ramirez R; Chen G; Subramanian R; Anderton S; Kim Y; Wong L; Morgan J; Pratt HC; Reinholdt L; Devine W; Leatherbury L; Tobita K; Lo CW
    Circ Cardiovasc Imaging; 2014 Jan; 7(1):31-42. PubMed ID: 24319090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Haploinsufficiency of TAB2 causes congenital heart defects in humans.
    Thienpont B; Zhang L; Postma AV; Breckpot J; Tranchevent LC; Van Loo P; Møllgård K; Tommerup N; Bache I; Tümer Z; van Engelen K; Menten B; Mortier G; Waggoner D; Gewillig M; Moreau Y; Devriendt K; Larsen LA
    Am J Hum Genet; 2010 Jun; 86(6):839-49. PubMed ID: 20493459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rare copy number variants analysis identifies novel candidate genes in heterotaxy syndrome patients with congenital heart defects.
    Liu C; Cao R; Xu Y; Li T; Li F; Chen S; Xu R; Sun K
    Genome Med; 2018 May; 10(1):40. PubMed ID: 29843777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A familial congenital heart disease with a possible multigenic origin involving a mutation in BMPR1A.
    Demal TJ; Heise M; Reiz B; Dogra D; Brænne I; Reichenspurner H; Männer J; Aherrahrou Z; Schunkert H; Erdmann J; Abdelilah-Seyfried S
    Sci Rep; 2019 Feb; 9(1):2959. PubMed ID: 30814609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetics in zebrafish, mice, and humans to dissect congenital heart disease: insights in the role of VEGF.
    Lambrechts D; Carmeliet P
    Curr Top Dev Biol; 2004; 62():189-224. PubMed ID: 15522743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precise in vivo functional analysis of DNA variants with base editing using ACEofBASEs target prediction.
    Cornean A; Gierten J; Welz B; Mateo JL; Thumberger T; Wittbrodt J
    Elife; 2022 Apr; 11():. PubMed ID: 35373735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recurrence of discordant congenital heart defects in families.
    Oyen N; Poulsen G; Wohlfahrt J; Boyd HA; Jensen PK; Melbye M
    Circ Cardiovasc Genet; 2010 Apr; 3(2):122-8. PubMed ID: 20173214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Congenital heart disease and genetic syndromes: new insights into molecular mechanisms.
    Calcagni G; Unolt M; Digilio MC; Baban A; Versacci P; Tartaglia M; Baldini A; Marino B
    Expert Rev Mol Diagn; 2017 Sep; 17(9):861-870. PubMed ID: 28745539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bridging the gap between anatomy and molecular genetics for an improved understanding of congenital heart disease.
    Reamon-Buettner SM; Spanel-Borowski K; Borlak J
    Ann Anat; 2006 May; 188(3):213-20. PubMed ID: 16711160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Autosomal Recessive Splice-Altering Variant in
    Massadeh S; Albeladi M; Albesher N; Alhabshan F; Kampe KD; Chaikhouni F; Kabbani MS; Beetz C; Alaamery M
    Genes (Basel); 2021 Apr; 12(5):. PubMed ID: 33919081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic aetiology distribution of 398 foetuses with congenital heart disease in the prenatal setting.
    Yi T; Hao X; Sun H; Zhang Y; Han J; Gu X; Sun L; Liu X; Zhao Y; Guo Y; Zhou X; He Y
    ESC Heart Fail; 2023 Apr; 10(2):917-930. PubMed ID: 36478645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNA 19a replacement partially rescues fin and cardiac defects in zebrafish model of Holt Oram syndrome.
    Chiavacci E; D'Aurizio R; Guzzolino E; Russo F; Baumgart M; Groth M; Mariani L; D'Onofrio M; Arisi I; Pellegrini M; Cellerino A; Cremisi F; Pitto L
    Sci Rep; 2015 Dec; 5():18240. PubMed ID: 26657204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Left-right patterning in congenital heart disease beyond heterotaxy.
    Gabriel GC; Lo CW
    Am J Med Genet C Semin Med Genet; 2020 Mar; 184(1):90-96. PubMed ID: 31999049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.