These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 38892147)

  • 21. Loop-mediated isothermal amplification (LAMP): A novel rapid detection platform for pathogens.
    Li Y; Fan P; Zhou S; Zhang L
    Microb Pathog; 2017 Jun; 107():54-61. PubMed ID: 28323152
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advanced molecular diagnostic techniques for detection of food-borne pathogens: Current applications and future challenges.
    Umesha S; Manukumar HM
    Crit Rev Food Sci Nutr; 2018 Jan; 58(1):84-104. PubMed ID: 26745757
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrochemical immunosensors for Salmonella detection in food.
    Melo AM; Alexandre DL; Furtado RF; Borges MF; Figueiredo EA; Biswas A; Cheng HN; Alves CR
    Appl Microbiol Biotechnol; 2016 Jun; 100(12):5301-12. PubMed ID: 27138197
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Current State of Development of Biosensors and Their Application in Foodborne Pathogen Detection.
    Xu L; Bai X; Bhunia AK
    J Food Prot; 2021 Jul; 84(7):1213-1227. PubMed ID: 33710346
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR/Cas-based colorimetric biosensors: a promising tool for the diagnosis of bacterial foodborne pathogens in food products.
    Saleh EAM; Ali E; Muxamadovna GM; Kassem AF; Kaur I; Kumar A; Jabbar HS; Alwaily ER; Elawady A; Omran AA
    Anal Methods; 2024 Jun; 16(22):3448-3463. PubMed ID: 38804827
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a gold nanoparticle-based universal oligonucleotide microarray for multiplex and low-cost detection of foodborne pathogens.
    Wang X; Ying S; Wei X; Yuan J
    Int J Food Microbiol; 2017 Jul; 253():66-74. PubMed ID: 28505584
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fiber-Optic-Based Biosensor as an Innovative Technology for Point-of-Care Testing Detection of Foodborne Pathogenic Bacteria To Defend Food and Agricultural Product Safety.
    Gu R; Duan Y; Li Y; Luo Z
    J Agric Food Chem; 2023 Jul; 71(29):10982-10988. PubMed ID: 37432923
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biosensors as innovative tools for the detection of food borne pathogens.
    Arora P; Sindhu A; Dilbaghi N; Chaudhury A
    Biosens Bioelectron; 2011 Oct; 28(1):1-12. PubMed ID: 21763122
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A film-based integrated chip for gene amplification and electrochemical detection of pathogens causing foodborne illnesses.
    Park YM; Lim SY; Shin SJ; Kim CH; Jeong SW; Shin SY; Bae NH; Lee SJ; Na J; Jung GY; Lee TJ
    Anal Chim Acta; 2018 Oct; 1027():57-66. PubMed ID: 29866270
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay.
    Zhao Y; Wang H; Zhang P; Sun C; Wang X; Wang X; Yang R; Wang C; Zhou L
    Sci Rep; 2016 Feb; 6():21342. PubMed ID: 26884128
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent Advances in Biosensor Development for the Detection of Viral Particles in Foods: A Comprehensive Review.
    Zhu X; Kim TY; Kim SM; Luo K; Lim MC
    J Agric Food Chem; 2023 Nov; 71(43):15942-15953. PubMed ID: 37862248
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent Advances and Applications of Rapid Microbial Assessment from a Food Safety Perspective.
    Pampoukis G; Lytou AE; Argyri AA; Panagou EZ; Nychas GE
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408414
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon dots-based fluorescent probe for detection of foodborne pathogens and its potential with microfluidics.
    Ma G; Li X; Cai J; Wang X
    Food Chem; 2024 Sep; 451():139385. PubMed ID: 38663242
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Applications of Nanotechnology in Sensor-Based Detection of Foodborne Pathogens.
    Kumar H; Kuča K; Bhatia SK; Saini K; Kaushal A; Verma R; Bhalla TC; Kumar D
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32244581
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Developments in Micro- and Nanotechnology for Foodborne Pathogen Detection.
    Carlson K; Misra M; Mohanty S
    Foodborne Pathog Dis; 2018 Jan; 15(1):16-25. PubMed ID: 29106297
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lateral Flow Strip Biosensors for Foodborne Pathogenic Bacteria via Direct and Indirect Sensing Strategies: A Review.
    Ji Y; Huang Y; Cheng Z; Hao W; Liu G; Liu Y; Zhang X
    J Agric Food Chem; 2023 Jul; 71(27):10250-10268. PubMed ID: 37389539
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biosensors for rapid and sensitive detection of Staphylococcus aureus in food.
    Rubab M; Shahbaz HM; Olaimat AN; Oh DH
    Biosens Bioelectron; 2018 May; 105():49-57. PubMed ID: 29358112
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical sensing for real-time detection of food-borne pathogens in fresh produce using machine learning.
    Sharma S; Tharani L
    Sci Prog; 2024; 107(2):368504231223029. PubMed ID: 38773741
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of Biosensors for Detection of Pathogenic Food Bacteria: A Review.
    Ali AA; Altemimi AB; Alhelfi N; Ibrahim SA
    Biosensors (Basel); 2020 May; 10(6):. PubMed ID: 32486225
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing and Quantifying the Food-Borne Pathogens and Toxins: From In Vitro to In Vivo.
    Liu JM; Wang ZH; Ma H; Wang S
    J Agric Food Chem; 2018 Feb; 66(5):1061-1066. PubMed ID: 29341609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.