These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 38892147)

  • 41. Current Scenario of Pathogen Detection Techniques in Agro-Food Sector.
    Nehra M; Kumar V; Kumar R; Dilbaghi N; Kumar S
    Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884292
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Application of Hyperspectral Imaging as a Nondestructive Technique for Foodborne Pathogen Detection and Characterization.
    Bonah E; Huang X; Aheto JH; Osae R
    Foodborne Pathog Dis; 2019 Oct; 16(10):712-722. PubMed ID: 31305129
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular imprinting technology for sensing foodborne pathogenic bacteria.
    Zhang J; Wang Y; Lu X
    Anal Bioanal Chem; 2021 Jul; 413(18):4581-4598. PubMed ID: 33564924
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular Tools To Study Preharvest Food Safety Challenges.
    Kumar D; Thakur S
    Microbiol Spectr; 2018 Feb; 6(1):. PubMed ID: 29451114
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrochemical Peptide-Based Sensors for Foodborne Pathogens Detection.
    Tertis M; Hosu O; Feier B; Cernat A; Florea A; Cristea C
    Molecules; 2021 May; 26(11):. PubMed ID: 34071841
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples.
    Vaisocherová-Lísalová H; Víšová I; Ermini ML; Špringer T; Song XC; Mrázek J; Lamačová J; Scott Lynn N; Šedivák P; Homola J
    Biosens Bioelectron; 2016 Jun; 80():84-90. PubMed ID: 26807521
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Critical Review on Detection of Foodborne Pathogens Using Electrochemical Biosensors.
    Patil AVP; Yang PF; Yang CY; Gaur MS; Wu CC
    Crit Rev Biomed Eng; 2024; 52(3):17-40. PubMed ID: 38523439
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nucleic acid amplification-based strategy to detect foodborne pathogens in milk: a review.
    Pang L; Pi X; Yang X; Song D; Qin X; Wang L; Man C; Zhang Y; Jiang Y
    Crit Rev Food Sci Nutr; 2024; 64(16):5398-5413. PubMed ID: 36476145
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrochemical Biosensors for Detection of Foodborne Pathogens.
    Zhang Z; Zhou J; Du X
    Micromachines (Basel); 2019 Mar; 10(4):. PubMed ID: 30925806
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recent advancements in microfluidic chip biosensor detection of foodborne pathogenic bacteria: a review.
    Mi F; Hu C; Wang Y; Wang L; Peng F; Geng P; Guan M
    Anal Bioanal Chem; 2022 Apr; 414(9):2883-2902. PubMed ID: 35064302
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Detection Methods for Foodborne Viruses: Current State-of-Art and Future Perspectives.
    Yin L; Li Y; Zhang W; Han X; Wu Q; Xie Y; Fan J; Ma L
    J Agric Food Chem; 2023 Mar; 71(8):3551-3563. PubMed ID: 36657010
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Challenges and approaches to reducing foodborne illness.
    Woteki CE; Kineman BD
    Annu Rev Nutr; 2003; 23():315-44. PubMed ID: 12626692
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biosensors Coupled with Signal Amplification Technology for the Detection of Pathogenic Bacteria: A Review.
    Huang F; Zhang Y; Lin J; Liu Y
    Biosensors (Basel); 2021 Jun; 11(6):. PubMed ID: 34207580
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analytical Applications of Nanomaterials in Monitoring Biological and Chemical Contaminants in Food.
    Lim MC; Kim YR
    J Microbiol Biotechnol; 2016 Sep; 26(9):1505-16. PubMed ID: 27363472
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nanomaterial interfaces designed with different biorecognition elements for biosensing of key foodborne pathogens.
    Atay E; Altan A
    Compr Rev Food Sci Food Saf; 2023 Jul; 22(4):3151-3184. PubMed ID: 37222549
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biofilm Formation and Control of Foodborne Pathogenic Bacteria.
    Liu X; Yao H; Zhao X; Ge C
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985403
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Application of lectin-based biosensor technology in the detection of foodborne pathogenic bacteria: a review.
    Mi F; Guan M; Hu C; Peng F; Sun S; Wang X
    Analyst; 2021 Jan; 146(2):429-443. PubMed ID: 33231246
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Recent Original Perspectives on Nonculture-Based Bacteria Detection Methods: A Comprehensive Review.
    Güven E; Azizoglu RO
    Foodborne Pathog Dis; 2022 Jul; 19(7):425-440. PubMed ID: 35076294
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lab-on-a-Chip Electrochemical Biosensors for Foodborne Pathogen Detection: A Review of Common Standards and Recent Progress.
    Zolti O; Suganthan B; Ramasamy RP
    Biosensors (Basel); 2023 Feb; 13(2):. PubMed ID: 36831981
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microbes versus microbes: control of pathogens in the food chain.
    Jordan K; Dalmasso M; Zentek J; Mader A; Bruggeman G; Wallace J; De Medici D; Fiore A; Prukner-Radovcic E; Lukac M; Axelsson L; Holck A; Ingmer H; Malakauskas M
    J Sci Food Agric; 2014 Dec; 94(15):3079-89. PubMed ID: 24816992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.