These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 38892412)
1. Long Noncoding RNAs in Response to Hyperosmolarity Stress, but Not Salt Stress, Were Mainly Enriched in the Rice Roots. Pang Y; Zheng K; Min Q; Wang Y; Xue X; Li W; Zhao H; Qiao F; Han S Int J Mol Sci; 2024 Jun; 25(11):. PubMed ID: 38892412 [TBL] [Abstract][Full Text] [Related]
2. OsOSCA1.1 Mediates Hyperosmolality and Salt Stress Sensing in Han Y; Wang Y; Zhai Y; Wen Z; Liu J; Xi C; Zhao H; Wang Y; Han S Biology (Basel); 2022 Apr; 11(5):. PubMed ID: 35625406 [TBL] [Abstract][Full Text] [Related]
3. Functional analysis of rice OSCA genes overexpressed in the arabidopsis osca1 mutant due to drought and salt stresses. Zhai Y; Wen Z; Fang W; Wang Y; Xi C; Liu J; Zhao H; Wang Y; Han S Transgenic Res; 2021 Dec; 30(6):811-820. PubMed ID: 34146237 [TBL] [Abstract][Full Text] [Related]
4. Continuous salt stress-induced long non-coding RNAs and DNA methylation patterns in soybean roots. Chen R; Li M; Zhang H; Duan L; Sun X; Jiang Q; Zhang H; Hu Z BMC Genomics; 2019 Oct; 20(1):730. PubMed ID: 31606033 [TBL] [Abstract][Full Text] [Related]
5. Transcriptomic analyses of rice (Oryza sativa) genes and non-coding RNAs under nitrogen starvation using multiple omics technologies. Shin SY; Jeong JS; Lim JY; Kim T; Park JH; Kim JK; Shin C BMC Genomics; 2018 Jul; 19(1):532. PubMed ID: 30005603 [TBL] [Abstract][Full Text] [Related]
6. Identification and functional prediction of long non-coding RNAs of rice (Oryza sativa L.) at reproductive stage under salinity stress. Jain P; Hussian S; Nishad J; Dubey H; Bisht DS; Sharma TR; Mondal TK Mol Biol Rep; 2021 Mar; 48(3):2261-2271. PubMed ID: 33742326 [TBL] [Abstract][Full Text] [Related]
7. Identification and Characterization of miRNAs and lncRNAs Associated with Salinity Stress in Rice Panicles. Jiang C; Wang Y; He Y; Peng Y; Xie L; Li Y; Sun W; Zhou J; Zheng C; Xie X Int J Mol Sci; 2024 Jul; 25(15):. PubMed ID: 39125819 [TBL] [Abstract][Full Text] [Related]
8. Integrated analysis of long non-coding RNAs and mRNAs reveals the regulatory network of maize seedling root responding to salt stress. Liu P; Zhang Y; Zou C; Yang C; Pan G; Ma L; Shen Y BMC Genomics; 2022 Jan; 23(1):50. PubMed ID: 35026983 [TBL] [Abstract][Full Text] [Related]
9. Stress-responsive regulation of long non-coding RNA polyadenylation in Oryza sativa. Yuan J; Li J; Yang Y; Tan C; Zhu Y; Hu L; Qi Y; Lu ZJ Plant J; 2018 Mar; 93(5):814-827. PubMed ID: 29265542 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide analysis of long non-coding RNAs affecting roots development at an early stage in the rice response to cadmium stress. Chen L; Shi S; Jiang N; Khanzada H; Wassan GM; Zhu C; Peng X; Xu J; Chen Y; Yu Q; He X; Fu J; Chen X; Hu L; Ouyang L; Sun X; He H; Bian J BMC Genomics; 2018 Jun; 19(1):460. PubMed ID: 29902991 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.). Zhou Y; Yang P; Cui F; Zhang F; Luo X; Xie J PLoS One; 2016; 11(1):e0146242. PubMed ID: 26752408 [TBL] [Abstract][Full Text] [Related]
12. Heterogeneous expression of plasma-membrane-localised OsOSCA1.4 complements osmotic sensing based on hyperosmolality and salt stress in Arabidopsis osca1 mutant. Zhai Y; Wen Z; Han Y; Zhuo W; Wang F; Xi C; Liu J; Gao P; Zhao H; Wang Y; Wang Y; Han S Cell Calcium; 2020 Nov; 91():102261. PubMed ID: 32798853 [TBL] [Abstract][Full Text] [Related]
13. Long non-coding RNAs as the regulatory hubs in rice response to salt stress. Mirdar Mansuri R; Azizi AH; Sadri AH; Shobbar ZS Sci Rep; 2022 Dec; 12(1):21696. PubMed ID: 36522395 [TBL] [Abstract][Full Text] [Related]
14. Comprehensive insights into the regulatory mechanisms of lncRNA in alkaline-salt stress tolerance in rice. Rehman OU; Uzair M; Farooq MS; Saleem B; Attacha S; Attia KA; Farooq U; Fiaz S; El-Kallawy WH; Kimiko I; Khan MR Mol Biol Rep; 2023 Sep; 50(9):7381-7392. PubMed ID: 37450076 [TBL] [Abstract][Full Text] [Related]
15. Pokkali: A Naturally Evolved Salt-Tolerant Rice Shows a Distinguished Set of lncRNAs Possibly Contributing to the Tolerant Phenotype. Tiwari S; Jain M; Singla-Pareek SL; Bhalla PL; Singh MB; Pareek A Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511436 [TBL] [Abstract][Full Text] [Related]
16. Construction of regulatory networks mediated by small RNAs responsive to abiotic stresses in rice (Oryza sativa). Qin J; Ma X; Tang Z; Meng Y Comput Biol Chem; 2015 Oct; 58():69-80. PubMed ID: 26057839 [TBL] [Abstract][Full Text] [Related]
17. Deciphering the non-coding RNA-level response to arsenic stress in rice ( Tang Z; Xu M; Ito H; Cai J; Ma X; Qin J; Yu D; Meng Y Plant Signal Behav; 2019; 14(9):1629268. PubMed ID: 31187662 [TBL] [Abstract][Full Text] [Related]
18. The trihelix transcription factor OsGTγ-2 is involved adaption to salt stress in rice. Liu X; Wu D; Shan T; Xu S; Qin R; Li H; Negm M; Wu D; Li J Plant Mol Biol; 2020 Jul; 103(4-5):545-560. PubMed ID: 32504260 [TBL] [Abstract][Full Text] [Related]
19. Maize transposable elements contribute to long non-coding RNAs that are regulatory hubs for abiotic stress response. Lv Y; Hu F; Zhou Y; Wu F; Gaut BS BMC Genomics; 2019 Nov; 20(1):864. PubMed ID: 31729949 [TBL] [Abstract][Full Text] [Related]
20. Transcriptomic Profiling of Fe-Responsive lncRNAs and Their Regulatory Mechanism in Rice. Wang S; Sun S; Guo R; Liao W; Shou H Genes (Basel); 2021 Apr; 12(4):. PubMed ID: 33919786 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]