These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38892439)

  • 1. Enhancing Machine-Learning Prediction of Enzyme Catalytic Temperature Optima through Amino Acid Conservation Analysis.
    Cao Y; Qiu B; Ning X; Fan L; Qin Y; Yu D; Yang C; Ma H; Liao X; You C
    Int J Mol Sci; 2024 Jun; 25(11):. PubMed ID: 38892439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Applied to Predicting Microorganism Growth Temperatures and Enzyme Catalytic Optima.
    Li G; Rabe KS; Nielsen J; Engqvist MKM
    ACS Synth Biol; 2019 Jun; 8(6):1411-1420. PubMed ID: 31117361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving Enzyme Optimum Temperature Prediction with Resampling Strategies and Ensemble Learning.
    Gado JE; Beckham GT; Payne CM
    J Chem Inf Model; 2020 Aug; 60(8):4098-4107. PubMed ID: 32639729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of enzyme design in catalytic stability by artificial intelligence.
    Ming Y; Wang W; Yin R; Zeng M; Tang L; Tang S; Li M
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 36971385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of thermostability from amino acid attributes by combination of clustering with attribute weighting: a new vista in engineering enzymes.
    Ebrahimi M; Lakizadeh A; Agha-Golzadeh P; Ebrahimie E; Ebrahimi M
    PLoS One; 2011; 6(8):e23146. PubMed ID: 21853079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. deepNEC: a novel alignment-free tool for the identification and classification of nitrogen biochemical network-related enzymes using deep learning.
    Duhan N; Norton JM; Kaundal R
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35325031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial Intelligence-Powered Construction of a Microbial Optimal Growth Temperature Database and Its Impact on Enzyme Optimal Temperature Prediction.
    Wang X; Zong Y; Zhou X; Xu L; He W; Quan S
    J Phys Chem B; 2024 Mar; 128(10):2281-2292. PubMed ID: 38437173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specification of amino acid residues essential for the catalytic reaction of cold-active protein-tyrosine phosphatase of a psychrophile, Shewanella sp.
    Tsuruta H; Tamura J; Yamagata H; Aizono Y
    Biosci Biotechnol Biochem; 2004 Feb; 68(2):440-3. PubMed ID: 14981312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of Thermostability of Enzymes Based on the Amino Acid Index (AAindex) Database and Machine Learning.
    Li G; Jia L; Wang K; Sun T; Huang J
    Molecules; 2023 Dec; 28(24):. PubMed ID: 38138586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploration and Evaluation of Machine Learning-Based Models for Predicting Enzymatic Reactions.
    Watanabe N; Murata M; Ogawa T; Vavricka CJ; Kondo A; Ogino C; Araki M
    J Chem Inf Model; 2020 Mar; 60(3):1833-1843. PubMed ID: 32053362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific parametrisation of a hybrid potential to simulate reactions in phosphatases.
    Arantes GM; Loos M
    Phys Chem Chem Phys; 2006 Jan; 8(3):347-53. PubMed ID: 16482277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A global analysis of function and conservation of catalytic residues in enzymes.
    Ribeiro AJM; Tyzack JD; Borkakoti N; Holliday GL; Thornton JM
    J Biol Chem; 2020 Jan; 295(2):314-324. PubMed ID: 31796628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of catalytic residues using Support Vector Machine with selected protein sequence and structural properties.
    Petrova NV; Wu CH
    BMC Bioinformatics; 2006 Jun; 7():312. PubMed ID: 16790052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A machine-learning approach for predicting palmitoylation sites from integrated sequence-based features.
    Li L; Luo Q; Xiao W; Li J; Zhou S; Li Y; Zheng X; Yang H
    J Bioinform Comput Biol; 2017 Feb; 15(1):1650025. PubMed ID: 27411307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PREvaIL, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework.
    Song J; Li F; Takemoto K; Haffari G; Akutsu T; Chou KC; Webb GI
    J Theor Biol; 2018 Apr; 443():125-137. PubMed ID: 29408627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate sequence-based prediction of catalytic residues.
    Zhang T; Zhang H; Chen K; Shen S; Ruan J; Kurgan L
    Bioinformatics; 2008 Oct; 24(20):2329-38. PubMed ID: 18710875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepTM: A deep learning algorithm for prediction of melting temperature of thermophilic proteins directly from sequences.
    Li M; Wang H; Yang Z; Zhang L; Zhu Y
    Comput Struct Biotechnol J; 2023; 21():5544-5560. PubMed ID: 38034401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutational analysis of chitin synthase 2 of Saccharomyces cerevisiae. Identification of additional amino acid residues involved in its catalytic activity.
    Yabe T; Yamada-Okabe T; Nakajima T; Sudoh M; Arisawa M; Yamada-Okabe H
    Eur J Biochem; 1998 Dec; 258(3):941-7. PubMed ID: 9990311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The inositol polyphosphate 5-phosphatases and the apurinic/apyrimidinic base excision repair endonucleases share a common mechanism for catalysis.
    Whisstock JC; Romero S; Gurung R; Nandurkar H; Ooms LM; Bottomley SP; Mitchell CA
    J Biol Chem; 2000 Nov; 275(47):37055-61. PubMed ID: 10962003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducing the vicissitudes of heterologous prochiral substrate catalysis by alcohol dehydrogenases through machine learning algorithms.
    Ghatak A; Shanbhag AP; Datta S
    Biochem Biophys Res Commun; 2024 Jan; 691():149298. PubMed ID: 38011820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.