These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Pyridine sulfonamide as a small key organic molecule for the potential treatment of type-II diabetes mellitus and Alzheimer's disease: In vitro studies against yeast α-glucosidase, acetylcholinesterase and butyrylcholinesterase. Riaz S; Khan IU; Bajda M; Ashraf M; Qurat-Ul-Ain ; Shaukat A; Rehman TU; Mutahir S; Hussain S; Mustafa G; Yar M Bioorg Chem; 2015 Dec; 63():64-71. PubMed ID: 26451651 [TBL] [Abstract][Full Text] [Related]
4. In Vitro Evaluation of α-amylase and α-glucosidase Inhibition of 2,3-Epoxyprocyanidin C1 and Other Constituents from Feunaing RT; Tamfu AN; Gbaweng AJY; Mekontso Magnibou L; Ntchapda F; Henoumont C; Laurent S; Talla E; Dinica RM Molecules; 2022 Dec; 28(1):. PubMed ID: 36615320 [TBL] [Abstract][Full Text] [Related]
5. Comparative Cholinesterase, α-Glucosidase Inhibitory, Antioxidant, Molecular Docking, and Kinetic Studies on Potent Succinimide Derivatives. Ahmad A; Ullah F; Sadiq A; Ayaz M; Saeed Jan M; Shahid M; Wadood A; Mahmood F; Rashid U; Ullah R; Sahibzada MUK; Alqahtani AS; Mahmood HM Drug Des Devel Ther; 2020; 14():2165-2178. PubMed ID: 32606589 [TBL] [Abstract][Full Text] [Related]
6. Explore new quinoxaline pharmacophore tethered sulfonamide fragments as in vitro α-glucosidase, α-amylase, and acetylcholinesterase inhibitors with ADMET and molecular modeling simulation. Ragab A; Salem MA; Ammar YA; Aboulthana WM; Helal MH; Abusaif MS Drug Dev Res; 2024 Jun; 85(4):e22216. PubMed ID: 38831547 [TBL] [Abstract][Full Text] [Related]
7. α-Glucosidase inhibition, 15-lipoxygenase inhibition, and brine shrimp toxicity of extracts and isolated compounds from Terminalia macroptera leaves. Pham AT; Malterud KE; Paulsen BS; Diallo D; Wangensteen H Pharm Biol; 2014 Sep; 52(9):1166-9. PubMed ID: 24635511 [TBL] [Abstract][Full Text] [Related]
8. Anti-Diabetic, Anti-Cholinesterase, and Anti-Inflammatory Potential of Plant Derived Extracts and Column Semi-Purified Fractions of Rauf A; Almasoud N; Ibrahim M; Alomar TS; Khalil AA; Khursheed T; Khan MU; Jan MS; Bhardwaj K; Iriti M; Sharma R Front Biosci (Landmark Ed); 2024 May; 29(5):183. PubMed ID: 38812295 [TBL] [Abstract][Full Text] [Related]
9. Phytochemical investigation, molecular docking studies and DFT calculations on the antidiabetic and cytotoxic activities of Gmelina philippensis CHAM. Sayed HM; Ahmed AS; Khallaf IS; Qayed WS; Mohammed AF; Farghaly HSM; Asem A J Ethnopharmacol; 2023 Mar; 303():115938. PubMed ID: 36410572 [TBL] [Abstract][Full Text] [Related]
10. Multiple in vitro biological effects of phenolic compounds from Terminalia chebula var. tomentella. Zhang XR; Qiao YJ; Zhu HT; Kong QH; Wang D; Yang CR; Zhang YJ J Ethnopharmacol; 2021 Jul; 275():114135. PubMed ID: 33892063 [TBL] [Abstract][Full Text] [Related]
11. Hydrolyzable tannins from the fruits of Terminalia chebula Retz and their α-glucosidase inhibitory activities. Lee DY; Kim HW; Yang H; Sung SH Phytochemistry; 2017 May; 137():109-116. PubMed ID: 28213992 [TBL] [Abstract][Full Text] [Related]
12. In Vitro Evaluation of the Anti-Diabetic Potential of Aqueous Acetone Akinyede KA; Oyewusi HA; Hughes GD; Ekpo OE; Oguntibeju OO Molecules; 2021 Dec; 27(1):. PubMed ID: 35011387 [TBL] [Abstract][Full Text] [Related]
13. Potential antioxidant, α-glucosidase, butyrylcholinesterase and acetylcholinesterase inhibitory activities of major constituents isolated from Al Garni HA; El-Halawany AM; Koshak AE; Malebari AM; Alzain AA; Mohamed GA; Ibrahim SRM; El-Sayed NS; Abdallah HM SAR QSAR Environ Res; 2024 May; 35(5):391-410. PubMed ID: 38769919 [No Abstract] [Full Text] [Related]
14. Alpha-Amylase and Alpha-Glucosidase Enzyme Inhibition and Antioxidant Potential of 3-Oxolupenal and Katononic Acid Isolated from Alqahtani AS; Hidayathulla S; Rehman MT; ElGamal AA; Al-Massarani S; Razmovski-Naumovski V; Alqahtani MS; El Dib RA; AlAjmi MF Biomolecules; 2019 Dec; 10(1):. PubMed ID: 31905962 [No Abstract] [Full Text] [Related]
15. Comparative study of the antidiabetic potential of Tan DC; Idris KI; Kassim NK; Lim PC; Safinar Ismail I; Hamid M; Ng RC Pharm Biol; 2019 Dec; 57(1):345-354. PubMed ID: 31185767 [No Abstract] [Full Text] [Related]
16. Mechanistic Insights into the Inhibitory Activities of Chemical Constituents from the Fruits of Terminalia boivinii on α-Glucosidase. Dlamini BS; Chen CR; Chen YK; Hsu JL; Shih WL; Chang CI Chem Biodivers; 2022 Jul; 19(7):e202200137. PubMed ID: 35726787 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and in vitro evaluation of chlorogenic acid amides as potential hypoglycemic agents and their synergistic effect with acarbose. Cardullo N; Floresta G; Rescifina A; Muccilli V; Tringali C Bioorg Chem; 2021 Dec; 117():105458. PubMed ID: 34736132 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of synthetic 2-aryl quinoxaline derivatives as α-amylase, α-glucosidase, acetylcholinesterase, and butyrylcholinesterase inhibitors. Hameed S; Khan KM; Taslimi P; Salar U; Taskin-Tok T; Kisa D; Saleem F; Solangi M; Ahmed MHU; Rani K Int J Biol Macromol; 2022 Jun; 211():653-668. PubMed ID: 35568155 [TBL] [Abstract][Full Text] [Related]
19. Phytochemicals and enzymes inhibitory potentials of leaves and rootbarks of Sarcocephallus latifolius (smith): In vitro and in silico investigations. Ajiboye AT; Asekun OT; Ayipo YO; Mordi MN; Familoni OB; Ali Z; Khan IA Fitoterapia; 2024 Jul; 176():106037. PubMed ID: 38801897 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of Antioxidant, Antidiabetic and Anticholinesterase Activities of Smallanthus sonchifolius Landraces and Correlation with Their Phytochemical Profiles. Russo D; Valentão P; Andrade PB; Fernandez EC; Milella L Int J Mol Sci; 2015 Jul; 16(8):17696-718. PubMed ID: 26263984 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]