These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 38893359)

  • 1. MPHGCL-DDI: Meta-Path-Based Heterogeneous Graph Contrastive Learning for Drug-Drug Interaction Prediction.
    Hu B; Yu Z; Li M
    Molecules; 2024 May; 29(11):. PubMed ID: 38893359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HTCL-DDI: a hierarchical triple-view contrastive learning framework for drug-drug interaction prediction.
    Zhang R; Wang X; Wang P; Meng Z; Cui W; Zhou Y
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37742052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MM-GANN-DDI: Multimodal Graph-Agnostic Neural Networks for Predicting Drug-Drug Interaction Events.
    Feng J; Liang Y; Yu T
    Comput Biol Med; 2023 Nov; 166():107492. PubMed ID: 37820558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MDDI-SCL: predicting multi-type drug-drug interactions via supervised contrastive learning.
    Lin S; Chen W; Chen G; Zhou S; Wei DQ; Xiong Y
    J Cheminform; 2022 Nov; 14(1):81. PubMed ID: 36380384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning self-supervised molecular representations for drug-drug interaction prediction.
    Kpanou R; Dallaire P; Rousseau E; Corbeil J
    BMC Bioinformatics; 2024 Jan; 25(1):47. PubMed ID: 38291362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A social theory-enhanced graph representation learning framework for multitask prediction of drug-drug interactions.
    Feng YH; Zhang SW; Feng YY; Zhang QQ; Shi MH; Shi JY
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semi-supervised heterogeneous graph contrastive learning for drug-target interaction prediction.
    Yao K; Wang X; Li W; Zhu H; Jiang Y; Li Y; Tian T; Yang Z; Liu Q; Liu Q
    Comput Biol Med; 2023 Sep; 163():107199. PubMed ID: 37421738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DrugDAGT: a dual-attention graph transformer with contrastive learning improves drug-drug interaction prediction.
    Chen Y; Wang J; Zou Q; Niu M; Ding Y; Song J; Wang Y
    BMC Biol; 2024 Oct; 22(1):233. PubMed ID: 39396972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. KAMPNet: multi-source medical knowledge augmented medication prediction network with multi-level graph contrastive learning.
    An Y; Tang H; Jin B; Xu Y; Wei X
    BMC Med Inform Decis Mak; 2023 Oct; 23(1):243. PubMed ID: 37904198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model-agnostic framework to enhance knowledge graph-based drug combination prediction with drug-drug interaction data and supervised contrastive learning.
    Gu J; Bang D; Yi J; Lee S; Kim DK; Kim S
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37544660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting drug-drug interactions using multi-modal deep auto-encoders based network embedding and positive-unlabeled learning.
    Zhang Y; Qiu Y; Cui Y; Liu S; Zhang W
    Methods; 2020 Jul; 179():37-46. PubMed ID: 32497603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep graph contrastive learning model for drug-drug interaction prediction.
    Jiang Z; Gong Z; Dai X; Zhang H; Ding P; Shen C
    PLoS One; 2024; 19(6):e0304798. PubMed ID: 38885206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D graph neural network with few-shot learning for predicting drug-drug interactions in scaffold-based cold start scenario.
    Lv Q; Zhou J; Yang Z; He H; Chen CY
    Neural Netw; 2023 Aug; 165():94-105. PubMed ID: 37276813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive self-supervised learning for sequential recommendation.
    Sun X; Sun F; Zhang Z; Li P; Wang S
    Neural Netw; 2024 Nov; 179():106570. PubMed ID: 39089151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attention-wise masked graph contrastive learning for predicting molecular property.
    Liu H; Huang Y; Liu X; Deng L
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35940592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SSF-DDI: a deep learning method utilizing drug sequence and substructure features for drug-drug interaction prediction.
    Zhu J; Che C; Jiang H; Xu J; Yin J; Zhong Z
    BMC Bioinformatics; 2024 Jan; 25(1):39. PubMed ID: 38262923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical Negative Sampling Based Graph Contrastive Learning Approach for Drug-Disease Association Prediction.
    Wang Y; Song J; Dai Q; Duan X
    IEEE J Biomed Health Inform; 2024 May; 28(5):3146-3157. PubMed ID: 38294927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DDI Prediction With Heterogeneous Information Network - Meta-Path Based Approach.
    Tanvir F; Saifuddin KM; Islam MIK; Akbas E
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(5):1168-1179. PubMed ID: 38905082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DGCL: Distance-wise and Graph Contrastive Learning for medication recommendation.
    Li X; Zhang Y; Li X; Wei H; Lu M
    J Biomed Inform; 2023 Mar; 139():104301. PubMed ID: 36746345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GraphCL-DTA: A Graph Contrastive Learning With Molecular Semantics for Drug-Target Binding Affinity Prediction.
    Yang X; Yang G; Chu J
    IEEE J Biomed Health Inform; 2024 Aug; 28(8):4544-4552. PubMed ID: 38190664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.