These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 38893619)
1. Classification of Diabetic Retinopathy Disease Levels by Extracting Spectral Features Using Wavelet CNN. Sundar S; Subramanian S; Mahmud M Diagnostics (Basel); 2024 May; 14(11):. PubMed ID: 38893619 [TBL] [Abstract][Full Text] [Related]
2. Diabetic retinopathy classification based on multipath CNN and machine learning classifiers. Gayathri S; Gopi VP; Palanisamy P Phys Eng Sci Med; 2021 Sep; 44(3):639-653. PubMed ID: 34033015 [TBL] [Abstract][Full Text] [Related]
3. Multi-scale multi-attention network for diabetic retinopathy grading. Xia H; Long J; Song S; Tan Y Phys Med Biol; 2023 Dec; 69(1):. PubMed ID: 38035368 [No Abstract] [Full Text] [Related]
5. MediDRNet: Tackling category imbalance in diabetic retinopathy classification with dual-branch learning and prototypical contrastive learning. Teng S; Wang B; Yang F; Yi X; Zhang X; Sun Y Comput Methods Programs Biomed; 2024 Aug; 253():108230. PubMed ID: 38810377 [TBL] [Abstract][Full Text] [Related]
6. Automatic severity grade classification of diabetic retinopathy using deformable ladder Bi attention U-net and deep adaptive CNN. Durai DBJ; Jaya T Med Biol Eng Comput; 2023 Aug; 61(8):2091-2113. PubMed ID: 37338737 [TBL] [Abstract][Full Text] [Related]
7. A Regression-Based Approach to Diabetic Retinopathy Diagnosis Using Efficientnet. Vijayan M; S V Diagnostics (Basel); 2023 Feb; 13(4):. PubMed ID: 36832262 [TBL] [Abstract][Full Text] [Related]
8. Deep attentive convolutional neural network for automatic grading of imbalanced diabetic retinopathy in retinal fundus images. Li F; Tang S; Chen Y; Zou H Biomed Opt Express; 2022 Nov; 13(11):5813-5835. PubMed ID: 36733744 [TBL] [Abstract][Full Text] [Related]
9. Features extraction using encoded local binary pattern for detection and grading diabetic retinopathy. Berbar MA Health Inf Sci Syst; 2022 Dec; 10(1):14. PubMed ID: 35782197 [TBL] [Abstract][Full Text] [Related]
10. Understanding inherent image features in CNN-based assessment of diabetic retinopathy. Reguant R; Brunak S; Saha S Sci Rep; 2021 May; 11(1):9704. PubMed ID: 33958686 [TBL] [Abstract][Full Text] [Related]
11. Coarse-to-fine classification for diabetic retinopathy grading using convolutional neural network. Wu Z; Shi G; Chen Y; Shi F; Chen X; Coatrieux G; Yang J; Luo L; Li S Artif Intell Med; 2020 Aug; 108():101936. PubMed ID: 32972665 [TBL] [Abstract][Full Text] [Related]
12. A novel approach for intelligent diagnosis and grading of diabetic retinopathy. Hai Z; Zou B; Xiao X; Peng Q; Yan J; Zhang W; Yue K Comput Biol Med; 2024 Apr; 172():108246. PubMed ID: 38471350 [TBL] [Abstract][Full Text] [Related]
13. Simple methods for the lesion detection and severity grading of diabetic retinopathy by image processing and transfer learning. Sugeno A; Ishikawa Y; Ohshima T; Muramatsu R Comput Biol Med; 2021 Oct; 137():104795. PubMed ID: 34488028 [TBL] [Abstract][Full Text] [Related]
14. Applying supervised contrastive learning for the detection of diabetic retinopathy and its severity levels from fundus images. Islam MR; Abdulrazak LF; Nahiduzzaman M; Goni MOF; Anower MS; Ahsan M; Haider J; Kowalski M Comput Biol Med; 2022 Jul; 146():105602. PubMed ID: 35569335 [TBL] [Abstract][Full Text] [Related]
15. Detection of Diabetic Retinopathy using Convolutional Neural Networks for Feature Extraction and Classification (DRFEC). Das D; Biswas SK; Bandyopadhyay S Multimed Tools Appl; 2022 Nov; ():1-59. PubMed ID: 36467440 [TBL] [Abstract][Full Text] [Related]
16. Non-uniform Label Smoothing for Diabetic Retinopathy Grading from Retinal Fundus Images with Deep Neural Networks. Galdran A; Chelbi J; Kobi R; Dolz J; Lombaert H; Ben Ayed I; Chakor H Transl Vis Sci Technol; 2020 Jun; 9(2):34. PubMed ID: 32832207 [TBL] [Abstract][Full Text] [Related]
17. Referable diabetic retinopathy identification from eye fundus images with weighted path for convolutional neural network. Liu YP; Li Z; Xu C; Li J; Liang R Artif Intell Med; 2019 Aug; 99():101694. PubMed ID: 31606108 [TBL] [Abstract][Full Text] [Related]
18. Data Diversity in Convolutional Neural Network Based Ensemble Model for Diabetic Retinopathy. Inamullah ; Hassan S; Alrajeh NA; Mohammed EA; Khan S Biomimetics (Basel); 2023 Apr; 8(2):. PubMed ID: 37218773 [TBL] [Abstract][Full Text] [Related]
19. Automatic Grading of Retinal Blood Vessel in Deep Retinal Image Diagnosis. Maji D; Sekh AA J Med Syst; 2020 Sep; 44(10):180. PubMed ID: 32870389 [TBL] [Abstract][Full Text] [Related]
20. Segmentation-Assisted Fully Convolutional Neural Network Enhances Deep Learning Performance to Identify Proliferative Diabetic Retinopathy. Alam M; Zhao EJ; Lam CK; Rubin DL J Clin Med; 2023 Jan; 12(1):. PubMed ID: 36615186 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]