These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38893817)

  • 1. A Review on Traditional Processes and Laser Powder Bed Fusion of Aluminum Alloy Microstructures, Mechanical Properties, Costs, and Applications.
    Wang X; Zhang D; Li A; Yi D; Li T
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancements in the Additive Manufacturing of Magnesium and Aluminum Alloys through Laser-Based Approach.
    Sharma SK; Grewal HS; Saxena KK; Mohammed KA; Prakash C; Davim JP; Buddhi D; Raju R; Mohan DG; Tomków J
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser Powder-Bed Fusion of Ceramic Particulate Reinforced Aluminum Alloys: A Review.
    Minasyan T; Hussainova I
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Additive manufacturing of NiTi shape memory alloy and its industrial applications.
    Dzogbewu TC; de Beer DJ
    Heliyon; 2024 Jan; 10(1):e23369. PubMed ID: 38163186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser powder bed fusion (LPBF) of commercially pure titanium and alloy development for the LPBF process.
    Haase F; Siemers C; Rösler J
    Front Bioeng Biotechnol; 2023; 11():1260925. PubMed ID: 37744262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Alloy Development of Extremely High-Alloyed Metals Using Powder Blends in Laser Powder Bed Fusion.
    Ewald S; Kies F; Hermsen S; Voshage M; Haase C; Schleifenbaum JH
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31130684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Laser Scanning Speed on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fused K418 Nickel-Based Alloy.
    Chen Z; Lu Y; Luo F; Zhang S; Wei P; Yao S; Wang Y
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of Refractory High-Entropy Alloy WTaMoNbV by Powder Bed Fusion Process Using Mixed Elemental Alloying Powder.
    Ron T; Leon A; Popov V; Strokin E; Eliezer D; Shirizly A; Aghion E
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Aluminum Alloys Specifically Designed for Laser Powder Bed Fusion: A Review.
    Aversa A; Marchese G; Saboori A; Bassini E; Manfredi D; Biamino S; Ugues D; Fino P; Lombardi M
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30934694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructure and Mechanical Properties of Hypereutectic Al-High Si Alloys up to 70 wt.% Si-Content Produced from Pre-Alloyed and Blended Powder via Laser Powder Bed Fusion.
    Risse JH; Trempa M; Huber F; Höppel HW; Bartels D; Schmidt M; Reimann C; Friedrich J
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison on the Electrochemical Corrosion Behavior of Ti6Al4V Alloys Fabricated by Laser Powder Bed Fusion and Casting.
    Zhan Z; Zhang Q; Wang S; Liu X; Zhang H; Sun Z; Ge Y; Du N
    Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Practical Approach to Eliminate Solidification Cracks by Supplementing AlMg4.5Mn0.7 with AlSi10Mg Powder in Laser Powder Bed Fusion.
    Böhm C; Werz M; Weihe S
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective Platform Heating for Laser Powder Bed Fusion of an Al-Mn-Sc-Based Alloy.
    Bayoumy D; Boll T; Karapuzha AS; Wu X; Zhu Y; Huang A
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical Properties of Bulk Metallic Glasses Additively Manufactured by Laser Powder Bed Fusion: A Review.
    Luo H; Du Y
    Materials (Basel); 2023 Nov; 16(21):. PubMed ID: 37959631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructural Control Strategy Based on Optimizing Laser Powder Bed Fusion for Different Hastelloy X Powder Size.
    Jang JE; Kim W; Sung JH; Kim YJ; Park SH; Kim DH
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser additive manufacturing of biodegradable magnesium alloy WE43: A detailed microstructure analysis.
    Bär F; Berger L; Jauer L; Kurtuldu G; Schäublin R; Schleifenbaum JH; Löffler JF
    Acta Biomater; 2019 Oct; 98():36-49. PubMed ID: 31132536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser Powder-Bed Fusion as an Alloy Development Tool: Parameter Selection for In-Situ Alloying Using Elemental Powders.
    Shoji Aota L; Bajaj P; Zschommler Sandim HR; Aimé Jägle E
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32899864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occupational exposure during metal additive manufacturing: A case study of laser powder bed fusion of aluminum alloy.
    Azzougagh MN; Keller FX; Cabrol E; Cici M; Pourchez J
    J Occup Environ Hyg; 2021 Jun; 18(6):223-236. PubMed ID: 33989129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Process Optimization and Tailored Mechanical Properties of a Nuclear Zr-4 Alloy Fabricated via Laser Powder Bed Fusion.
    Song C; Zou Z; Yan Z; Liu F; Yang Y; Yan M; Han C
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design Concepts and Performance Characterization of Heat Pipe Wick Structures by LPBF Additive Manufacturing.
    Kappe K; Bihler M; Morawietz K; Hügenell PPC; Pfaff A; Hoschke K
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.