These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38893829)

  • 21. Optimising Surface Roughness and Density in Titanium Fabrication via Laser Powder Bed Fusion.
    Hassanin H; El-Sayed MA; Ahmadein M; Alsaleh NA; Ataya S; Ahmed MMZ; Essa K
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630178
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Thermo-Mechanical Coupling Effect in Selective Laser Melting of Aluminum Alloy Powder.
    Duan X; Chen X; Zhu K; Long T; Huang S; Jerry FYH
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33805355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Achievement of a Parameter Window for the Selective Laser Melting Formation of a GH3625 Alloy.
    Quan G; Deng Q; Zhao Y; Quan M; Wu D
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793400
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A residual heat compensation based scan strategy for powder bed fusion additive manufacturing.
    Yeung H; Lane B
    Manuf Lett; 2020; 25():. PubMed ID: 34123726
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Numerical Study on the Mesoscopic Characteristics of Ti-6Al-4V by Selective Laser Melting.
    Ao X; Liu J; Xia H; Yang Y
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454547
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermophysical Properties of Laser Powder Bed Fused Ti-6Al-4V and AlSi10Mg Alloys Made with Varying Laser Parameters.
    Akwaboa S; Zeng C; Amoafo-Yeboah N; Ibekwe S; Mensah P
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512194
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hardness Prediction of Laser Powder Bed Fusion Product Based on Melt Pool Radiation Intensity.
    Zhang T; Zhou X; Zhang P; Duan Y; Cheng X; Wang X; Ding G
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806799
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accurate determination of laser spot position during laser powder bed fusion process thermography.
    Zhirnov I; Mekhontsev S; Lane B; Grantham S; Bura N
    Manuf Lett; 2020; 23():. PubMed ID: 32855904
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predictive modelling of laser powder bed fusion of Fe-based nanocrystalline alloys based on experimental data using multiple linear regression analysis.
    Özden MG; Liu X; Wilkinson TJ; Üstün-Yavuz MS; Morley NA
    Heliyon; 2024 Aug; 10(15):e35047. PubMed ID: 39165969
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cost of Using Laser Powder Bed Fusion to Fabricate a Molten Salt-to-Supercritial Carbon Dioxide Heat Exchanger for Concentrating Solar Power.
    Ziev T; Rasouli E; Tano IN; Wu Z; Rao Yarasi S; Lamprinakos N; Seo J; Narayanan V; Rollett AD; Vaishnav P
    3D Print Addit Manuf; 2024 Jun; 11(3):e1108-e1118. PubMed ID: 39359594
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analytical Thermal Modeling of Powder Bed Metal Additive Manufacturing Considering Powder Size Variation and Packing.
    Ning J; Wang W; Ning X; Sievers DE; Garmestani H; Liang SY
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32344571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Roughness and Near-Surface Porosity of Unsupported Overhangs Produced by High-Speed Laser Powder Bed Fusion.
    Shange M; Yadroitsava I; du Plessis A; Yadroitsev I
    3D Print Addit Manuf; 2022 Aug; 9(4):288-300. PubMed ID: 36660231
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On thermal properties of metallic powder in laser powder bed fusion additive manufacturing.
    Zhang S; Lane B; Whiting J; Chou K
    J Manuf Process; 2019; 47():. PubMed ID: 32855624
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulation of the Evolution of Thermal Dynamics during Selective Laser Melting and Experimental Verification Using Online Monitoring.
    Bian P; Shao X; Du J; Ye F; Zhang X; Mu Y
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32784950
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of Power and Laser Speed on the Mechanical Properties of AlSi7Mg0.6 Manufactured by Laser Powder Bed Fusion.
    Vaudreuil S; Bencaid SE; Vanaei HR; El Magri A
    Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500137
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predictive modeling and optimization of multi-track processing for laser powder bed fusion of nickel alloy 625.
    Criales LE; Arısoy YM; Lane B; Moylan S; Donmez A; Özel T
    Addit Manuf; 2017 Jan; 13():. PubMed ID: 38487077
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Circumventing Solidification Cracking Susceptibility in Al-Cu Alloys Prepared by Laser Powder Bed Fusion.
    Xi L; Lu Q; Gu D; Cao S; Zhang H; Kaban I; Sarac B; Prashanth KG; Eckert J
    3D Print Addit Manuf; 2024 Apr; 11(2):e731-e742. PubMed ID: 38689899
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimizing Laser Powder Bed Fusion Parameters for IN-738LC by Response Surface Method.
    Vilanova M; Escribano-García R; Guraya T; San Sebastian M
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33143154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Laser Powder Bed Fusion (LPBF) of In718 and the Impact of Pre-Heating at 500 and 1000 °C: Operando Study.
    Ur Rehman A; Pitir F; Salamci MU
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772210
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Part geometry and conduction-based laser power control for powder bed fusion additive manufacturing.
    Yeung H; Lane B; Fox J
    Addit Manuf; 2019 Dec; 30():. PubMed ID: 34141600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.