These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38893842)

  • 1. Numerical Optimization of Variable Blank Holder Force Trajectories in Stamping Process for Multi-Defect Reduction.
    Guo F; Jeong H; Park D; Kim G; Sung B; Kim N
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-Objective Optimization of Process Parameters in 6016 Aluminum Alloy Hot Stamping Using Taguchi-Grey Relational Analysis.
    Jiang B; Huang J; Ma H; Zhao H; Ji H
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Objectives Optimization of Plastic Injection Molding Process Parameters Based on Numerical DNN-GA-MCS Strategy.
    Guo F; Han D; Kim N
    Polymers (Basel); 2024 Aug; 16(16):. PubMed ID: 39204467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Process Optimization of the Hot Stamping of AZ31 Magnesium Alloy Sheets Based on Response Surface Methodology.
    Zhao P; Wu Q; Yang YL; Chen Z
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research on High Temperature Stamping Forming Performance and Process Parameters Optimization of 7075 Aluminum Alloy.
    Ma Z; Ji H; Huang X; Xiao W; Tang X
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic analysis of geometric inaccuracy and its contributing factors in roboforming.
    Bharti S; Paul E; Uthaman A; Krishnaswamy H; Klimchik A; Abraham Boby R
    Sci Rep; 2024 Aug; 14(1):20291. PubMed ID: 39217217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research on the Micro Sheet Stamping Process Using Plasticine as Soft Punch.
    Wang X; Zhang D; Gu C; Shen Z; Liu H
    Materials (Basel); 2014 May; 7(6):4118-4131. PubMed ID: 28788668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Generalized Stress State and Temperature Dependent Damage Indicator Framework for Ductile Failure Prediction in Heat-Assisted Forming Operations.
    Camberg AA; Erhart T; Tröster T
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Blank Holding Force and Friction on Springback and Its Prediction of a Hat-Shaped Part Made of Dual-Phase Steel.
    Mulidrán P; Spišák E; Tomáš M; Majerníková J; Bidulská J; Bidulský R
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wrinkling and Strengthening Behaviors in the Two-Layer-Sheet Hot-Forming-Quenching Integrated Process for an Al-Cu-Mg-Alloy Thin-Walled Curved-Surface Shell.
    Fan X; Sun B; Qu W; Chen X; Wang X
    Materials (Basel); 2023 Jul; 16(13):. PubMed ID: 37445080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Investigation on the Formability of Al-Mg Alloy 5052 Sheet by Tensile and Cupping Test.
    He H; Yang T; Ren Y; Peng Y; Xue S; Zheng L
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An alternate method to springback compensation for sheet metal forming.
    Siswanto WA; Anggono AD; Omar B; Jusoff K
    ScientificWorldJournal; 2014; 2014():301271. PubMed ID: 25165738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving Prediction of Springback in Sheet Metal Forming Using Multilayer Perceptron-Based Genetic Algorithm.
    Trzepieciński T; Lemu HG
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32674296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the Hot Stamping-in-Die Quenching Composite Forming Process of 5083 Aluminum Alloy Skin.
    Yi L; Yu G; Tang Z; Li X; Gu Z
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on Stamping-Bulging Process of Thin-Walled Superalloy Diaphragm for S-Shaped Bellows.
    He Z; Zhao Q; Zhang K; Ning J; Xu Y; Ruan X
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Analysis of Machine Learning Methods for Predicting Robotized Incremental Metal Sheet Forming Force.
    Ostasevicius V; Paleviciute I; Paulauskaite-Taraseviciene A; Jurenas V; Eidukynas D; Kizauskiene L
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of Flat Clinching Process Combined with Material Forming Technology for Aluminum Alloy.
    Chen C; Zhao S; Han X; Wang Y; Zhao X
    Materials (Basel); 2017 Dec; 10(12):. PubMed ID: 29244737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A universal deep learning approach for modeling the flow of patients under different severities.
    Jiang S; Chin KS; Tsui KL
    Comput Methods Programs Biomed; 2018 Feb; 154():191-203. PubMed ID: 29249343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of holder pressure and size effects in micro deep drawing of rectangular work pieces driven by piezoelectric actuator.
    Aminzahed I; Mashhadi MM; Sereshk MRV
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():685-689. PubMed ID: 27987761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of Swinging Ball Heads with Different Arrangements in Multi-Point Stretch-Forming Process.
    Xing J; Cheng YY; Yi Z
    Materials (Basel); 2019 Jan; 12(3):. PubMed ID: 30678162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.