These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 38893842)
21. Analysis of TRIP Steel HCT690 Deformation Behaviour for Prediction of the Deformation Process and Spring-Back of the Material via Numerical Simulation. Koreček D; Solfronk P; Sobotka J Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591415 [TBL] [Abstract][Full Text] [Related]
22. A method for determining equivalent hardening responses to approximate sheet metal viscoplasticity. Attar HR; Li N; Foster A MethodsX; 2021; 8():101554. PubMed ID: 34754821 [TBL] [Abstract][Full Text] [Related]
23. Numerical and Experimental Analysis of Titanium Sheet Forming for Medical Instrument Parts. Więckowski W; Motyka M; Adamus J; Lacki P; Dyner M Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268970 [TBL] [Abstract][Full Text] [Related]
24. Multi-Objective Optimization of Thin-Walled Composite Axisymmetric Structures Using Neural Surrogate Models and Genetic Algorithms. Miller B; Ziemiański L Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895775 [TBL] [Abstract][Full Text] [Related]
25. A data-guided approach for the evaluation of zeolites for hydrogen storage with the aid of molecular simulations. Manda T; Barasa GO; Louis H; Irfan A; Agumba JO; Lugasi SO; Pembere AMS J Mol Model; 2024 Jan; 30(2):43. PubMed ID: 38236500 [TBL] [Abstract][Full Text] [Related]
26. Finite element simulation of the complete sheet metal blanking cycle: Effect of blanking clearance on force curve and cut edge quality. Rizk J; Rachik M; Maillard A Heliyon; 2024 May; 10(9):e30334. PubMed ID: 38707294 [TBL] [Abstract][Full Text] [Related]
27. Enhancing/Improving Forming Limit Curve and Fracture Height Predictions in the Single-Point Incremental Forming of Al1050 Sheet Material. Hoang TK; Luyen TT; Nguyen DT Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068009 [TBL] [Abstract][Full Text] [Related]
28. An Improved Deep Neural Network Model of Intelligent Vehicle Dynamics via Linear Decreasing Weight Particle Swarm and Invasive Weed Optimization Algorithms. Nie X; Min C; Pan Y; Li Z; Królczyk G Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808170 [TBL] [Abstract][Full Text] [Related]
29. Acquisition of Dynamic Material Properties in the Electrohydraulic Forming Process Using Artificial Neural Network. Woo MA; Moon YH; Song WJ; Kang BS; Kim J Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31671802 [TBL] [Abstract][Full Text] [Related]
30. Experimental Research and Numerical Modelling of the Cold Forming Process of the Inconel 625 Alloy Sheets Using Flexible Punch. Balcerzak M; Żaba K; Hojny M; Puchlerska S; Kuczek Ł; Trzepieciński T; Novák V Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38203939 [TBL] [Abstract][Full Text] [Related]
31. Methodology for Neural Network-Based Material Card Calibration Using LS-DYNA Meißner P; Winter J; Vietor T Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057362 [TBL] [Abstract][Full Text] [Related]
32. A Novel Approach to Predict Wrinkling of Aluminum Alloy During Warm/Hot Sheet Hydroforming Based on an Improved Yoshida Buckling Test. Cai G; Fu J; Zhang D; Yang J; Yuan Y; Lang L; Alexandrov S Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32151070 [TBL] [Abstract][Full Text] [Related]
33. Observation on the behavior of ultrasonic micro-hammer and its effects on the deep drawing process: Numerical simulation and experimental study. Malekipour E; Sharifi E; Shahbazi Majd N; Heidary H Ultrasonics; 2022 Feb; 119():106566. PubMed ID: 34607287 [TBL] [Abstract][Full Text] [Related]
34. Neural Network-Based Multi-Objective Optimization of Adjustable Drawbead Movement for Deep Drawing of Tailor-Welded Blanks. Kahhal P; Jung J; Hur YC; Moon YH; Kim JH Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207967 [TBL] [Abstract][Full Text] [Related]
35. Machine Learning-Based Surrogate Model for Press Hardening Process of 22MnB5 Sheet Steel Simulation in Industry 4.0. Abio A; Bonada F; Pujante J; Grané M; Nievas N; Lange D; Pujol O Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629674 [TBL] [Abstract][Full Text] [Related]
36. Dynamic Analysis of Closed Die Electromagnetic Sheet Metal Forming to Predict Deformation and Failure of AA6061-T6 Alloy Using a Fully Coupled Finite Element Model. Khan Z; Khan M; Yook SJ; Khan A; Younas M; Zahir MZ; Asad M Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431483 [TBL] [Abstract][Full Text] [Related]
37. Characterization of OT4-1 Alloy by Multi-Dome Forming Test. Zakhariev I; Aksenov S; Kotov A; Kolesnikov A Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28771204 [TBL] [Abstract][Full Text] [Related]
38. A Study on Yield Criteria Influence on Anisotropic Behavior and Fracture Prediction in Deep Drawing SECC Steel Cylindrical Cups. Trieu QH; Luyen TT; Nguyen DT; Bui NT Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930241 [TBL] [Abstract][Full Text] [Related]
39. Springback Reduction of Ultra-High-Strength Martensitic Steel Sheet by Electrically Single-Pulsed Current. Kim M; Bae G; Park N; Song JH Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407707 [TBL] [Abstract][Full Text] [Related]