These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38893854)

  • 41. Effect of Rolling Process and Aging on the Microstructure and Properties of Cu-1.0Cr-0.1Zr Alloy.
    Zha J; Zhao Y; Qiao Y; Zou H; Hua Z; Zhu W; Han Y; Zu G; Ran X
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837221
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interpretation of dynamic tensile behavior by austenite stability in ferrite-austenite duplex lightweight steels.
    Park J; Jo MC; Jeong HJ; Sohn SS; Kwak JH; Kim HS; Lee S
    Sci Rep; 2017 Nov; 7(1):15726. PubMed ID: 29146924
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of Grain Size on the Plastic Deformation Behaviors of a Fe-18Mn-1.3Al-0.6C Austenitic Steel.
    Cui Z; He S; Tang J; Fu D; Teng J; Jiang F
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556524
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of Rolling Treatment on Microstructure, Mechanical Properties, and Corrosion Properties of WE43 Alloy.
    Deng B; Dai Y; Lin J; Zhang D
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683286
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dramatic improvement of strain hardening and ductility to 95% in highly-deformable high-strength duplex lightweight steels.
    Sohn SS; Song H; Kwak JH; Lee S
    Sci Rep; 2017 May; 7(1):1927. PubMed ID: 28512311
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microstructure Evolution and Strengthening Mechanism of Dual-Phase Mg-8.3Li-3.1Al-1.09Si Alloys during Warm Rolling.
    Wang Y; Wu G; Liang B; He Y; Liu C; Liu J; Wei G
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793388
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evolution of Microstructural and Mechanical Properties during Cold-Rolling Deformation of a Biocompatible Ti-Nb-Zr-Ta Alloy.
    Dan A; Angelescu ML; Serban N; Cojocaru EM; Zarnescu-Ivan N; Cojocaru VD; Galbinasu BM
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629608
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Gradient Microstructure Design in Stainless Steel: A Strategy for Uniting Strength-Ductility Synergy and Corrosion Resistance.
    He Q; Wei W; Wang MS; Guo FJ; Zhai Y; Wang YF; Huang CX
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578669
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of Deformation Temperature on the Mechanical Behavior and Stability of Retained Austenite in TRIP-Assisted Medium-C Multiphase Steel.
    Skowronek A; Grajcar A
    Materials (Basel); 2020 May; 13(11):. PubMed ID: 32466388
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Investigation of microstructure evolution and martensite transformation developed in austenitic stainless steel subjected to a plastic strain gradient: A combination study of Mirco-XRD, EBSD, and ECCI techniques.
    Berahmand M; Ketabchi M; Jamshidian M; Tsurekawa S
    Micron; 2021 Apr; 143():103014. PubMed ID: 33549854
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tensile Properties and Damping Capacity of Cold-Rolled Fe-20Mn-12Cr-3Ni-3Si Damping Alloy.
    Kim JH; Jung JM; Shim H
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683565
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Influence of Lath, Block and Prior Austenite Grain (PAG) Size on the Tensile, Creep and Fatigue Properties of Novel Maraging Steel.
    Simm T; Sun L; McAdam S; Hill P; Rawson M; Perkins K
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773086
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of Austenitizing Temperature on Tensile and Impact Properties of a Martensitic Stainless Steel Containing Metastable Retained Austenite.
    Deng B; Yang D; Wang G; Hou Z; Yi H
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33672618
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparation and Mechanical Behavior of Ultra-High Strength Low-Carbon Steel.
    Lv Z; Qian L; Liu S; Zhan L; Qin S
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963667
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of Cu on the Microstructure and Mechanical Properties of a Low-Carbon Martensitic Stainless Steel.
    Ma J; Song Y; Jiang H; Rong L
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556655
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of Boron on the Microstructure, Superplastic Behavior, and Mechanical Properties of Ti-4Al-3Mo-1V Alloy.
    Postnikova MN; Kotov AD; Bazlov AI; Mosleh AO; Medvedeva SV; Mikhaylovskaya AV
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241341
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of Aging Treatment Regimes on Microstructure and Mechanical Properties of Selective Laser Melted 17-4 PH Steel.
    Dong D; Wang J; Chen C; Tang X; Ye Y; Ren Z; Yin S; Yuan Z; Liu M; Zhou K
    Micromachines (Basel); 2023 Apr; 14(4):. PubMed ID: 37421104
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of Manganese on the Strength-Toughness Relationship of Low-Carbon Copper and Nickel-Containing Hull Steel.
    Zhan Z; Shi Z; Wang Z; Lu W; Chen Z; Zhang D; Chai F; Luo X
    Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473484
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of Plastic Deformation Instabilities at Elevated Temperatures in Hot-Rolled Medium-Mn Steel.
    Kozłowska A; Grzegorczyk B; Staszuk M; Nuckowski PM; Grajcar A
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31842476
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tuning Microstructure and Mechanical Performance of a Co-Rich Transformation-Induced Plasticity High Entropy Alloy.
    Yi H; Xie R; Zhang Y; Wang L; Tan M; Li T; Wei D
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.