These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 38893920)
1. Stress and Microstructures Characterization Based on Magnetic Incremental Permeability and Magnetic Barkhausen Noise Techniques. Sheng H; Wang P; Yang Y; Tang C Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893920 [TBL] [Abstract][Full Text] [Related]
2. Magnetic Barkhausen Noise Transient Analysis for Microstructure Evolution Characterization with Tensile Stress in Elastic and Plastic Status. Liu J; Tian G; Gao B; Zeng K; Liu Q; Zheng Y Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960403 [TBL] [Abstract][Full Text] [Related]
3. Surface Decarburization Depth Detection in Rods of 60Si2Mn Steel with Magnetic Barkhausen Noise Technique. Li P; Wang X; Ding D; Gao Z; Fang W; Zhang C; He C; Liu X Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617102 [TBL] [Abstract][Full Text] [Related]
4. Quantitative Prediction of Surface Hardness in Cr12MoV Steel and S136 Steel with Two Magnetic Barkhausen Noise Feature Extraction Methods. Wang X; Cai Y; Liu X; He C Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610263 [TBL] [Abstract][Full Text] [Related]
5. Micro-Magnetic and Microstructural Characterization of Wear Progress on Case-Hardened 16MnCr5 Gear Wheels. Knyazeva M; Rozo Vasquez J; Gondecki L; Weibring M; Pöhl F; Kipp M; Tenberge P; Theisen W; Walther F; Biermann D Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30445714 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of Thermal Damage Impact on Microstructure and Properties of Carburized AISI 9310 Gear Steel Grade by Destructive and Non-Destructive Testing Methods. Dychtoń K; Gradzik A; Kolek Ł; Raga K Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576500 [TBL] [Abstract][Full Text] [Related]
7. A Method for Detecting the Randomness of Barkhausen Noise in a Material Fatigue Test Using Sensitivity and Uncertainty Analysis. Hou Y; Li X; Zheng Y; Zhou J; Tan J; Chen X Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962228 [TBL] [Abstract][Full Text] [Related]
8. Use of Time-Dependent Multispectral Representation of Magnetic Barkhausen Noise Signals for the Needs of Non-Destructive Evaluation of Steel Materials. Maciusowicz M; Psuj G Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30909632 [TBL] [Abstract][Full Text] [Related]
9. Time-Response-Histogram-Based Feature of Magnetic Barkhausen Noise for Material Characterization Considering Influences of Grain and Grain Boundary under In Situ Tensile Test. Liu J; Tian G; Gao B; Zeng K; Xu Y; Liu Q Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33800570 [TBL] [Abstract][Full Text] [Related]
10. Quantitative Evaluation of the Effect of Temperature on Magnetic Barkhausen Noise. Wang Y; Meydan T; Melikhov Y Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33572791 [TBL] [Abstract][Full Text] [Related]
11. Use of Time-Frequency Representation of Magnetic Barkhausen Noise for Evaluation of Easy Magnetization Axis of Grain-Oriented Steel. Maciusowicz M; Psuj G Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751858 [TBL] [Abstract][Full Text] [Related]
12. Measurement of the rate of transformation induced plasticity in TRIP steel by the use of Barkhausen noise emission as a function of plastic straining. Neslušan M; Pitoňák M; Čapek J; Kejzlar P; Trško L; Zgútová K; Slota J ISA Trans; 2022 Jun; 125():318-329. PubMed ID: 34389176 [TBL] [Abstract][Full Text] [Related]
13. Magnetic Signatures and Magnetization Mechanisms for Grinding Burns Detection and Evaluation. Ducharne B; Sebald G; Petitpré H; Lberni H; Wasniewski E; Zhang F Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430869 [TBL] [Abstract][Full Text] [Related]
14. Identification of Grain Oriented SiFe Steels Based on Imaging the Instantaneous Dynamics of Magnetic Barkhausen Noise Using Short-Time Fourier Transform and Deep Convolutional Neural Network. Maciusowicz M; Psuj G; Kochmański P Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009269 [TBL] [Abstract][Full Text] [Related]
15. Analysis of Magnetic Anisotropy and Non-Homogeneity of S235 Ship Structure Steel after Plastic Straining by the Use of Barkhausen Noise. Jurkovič M; Kalina T; Zgútová K; Neslušan M; Pitoňák M Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33076364 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the Magnetocrystalline Anisotropy of Typical Materials Using MBN Technology. Wang L; He C; Liu X Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34064858 [TBL] [Abstract][Full Text] [Related]
17. Influence of domain walls thickness, density and alignment on Barkhausen noise emission in low alloyed steels. Neslušan M; Pitoňák M; Minárik P; M Tkáč ; Kollár P; Životský O Sci Rep; 2023 Apr; 13(1):5687. PubMed ID: 37029152 [TBL] [Abstract][Full Text] [Related]
19. Predictive Modeling of Induction-Hardened Depth Based on the Barkhausen Noise Signal. Holmberg J; Hammersberg P; Lundin P; Olavison J Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677158 [TBL] [Abstract][Full Text] [Related]
20. Magnetic Measurement of Zn Layer Heterogeneity on the Flange of the Steel Road Barrier. Pitoňák M; Ondruš J; Minárik P; Kubjatko T; Neslušan M Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269130 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]