These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 38893928)
1. Antipathogenic Applications of Copper Nanoparticles in Air Filtration Systems. Mekapothula S; Chrysanthou E; Hall J; Nekkalapudi PD; McLean S; Cave GWV Materials (Basel); 2024 Jun; 17(11):. PubMed ID: 38893928 [TBL] [Abstract][Full Text] [Related]
2. CuO-Coated Antibacterial and Antiviral Car Air-Conditioning Filters. Perelshtein I; Levi I; Perkas N; Pollak A; Gedanken A ACS Appl Mater Interfaces; 2022 Jun; 14(21):24850-24855. PubMed ID: 35585796 [TBL] [Abstract][Full Text] [Related]
3. Air cleaning technologies: an evidence-based analysis. Medical Advisory Secretariat Ont Health Technol Assess Ser; 2005; 5(17):1-52. PubMed ID: 23074468 [TBL] [Abstract][Full Text] [Related]
4. Copper-Coated Polypropylene Filter Face Mask with SARS-CoV-2 Antiviral Ability. Jung S; Yang JY; Byeon EY; Kim DG; Lee DG; Ryoo S; Lee S; Shin CW; Jang HW; Kim HJ; Lee S Polymers (Basel); 2021 Apr; 13(9):. PubMed ID: 33922136 [TBL] [Abstract][Full Text] [Related]
5. Virucidal N95 Respirator Face Masks via Ultrathin Surface-Grafted Quaternary Ammonium Polymer Coatings. Sorci M; Fink TD; Sharma V; Singh S; Chen R; Arduini BL; Dovidenko K; Heldt CL; Palermo EF; Zha RH ACS Appl Mater Interfaces; 2022 Jun; 14(22):25135-25146. PubMed ID: 35613701 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and assessment of copper-based nanoparticles as a surface coating agent for antiviral properties against SARS-CoV-2. Purniawan A; Lusida MI; Pujiyanto RW; Nastri AM; Permanasari AA; Harsono AAH; Oktavia NH; Wicaksono ST; Dewantari JR; Prasetya RR; Rahardjo K; Nishimura M; Mori Y; Shimizu K Sci Rep; 2022 Mar; 12(1):4835. PubMed ID: 35318357 [TBL] [Abstract][Full Text] [Related]
7. Antiviral Activity of Silver, Copper Oxide and Zinc Oxide Nanoparticle Coatings against SARS-CoV-2. Merkl P; Long S; McInerney GM; Sotiriou GA Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34067553 [TBL] [Abstract][Full Text] [Related]
8. Silver nanoparticle-modified melt-blown polypropylene: Antibacterial and antifungal properties and antiviral activity against SARS-CoV-2. Medvedev AZ; Bokhonov BB; Kiselev OS; Ukhina AV; Dudina DV; Alekseev AY; Adamenko LS; Solomatina MV; Shestopalov AM Mater Lett; 2023 Sep; 346():134557. PubMed ID: 37215536 [TBL] [Abstract][Full Text] [Related]
9. Silver Nanoparticles-Polyethyleneimine-Based Coatings with Antiviral Activity against SARS-CoV-2: A New Method to Functionalize Filtration Media. Baselga M; Uranga-Murillo I; de Miguel D; Arias M; Sebastián V; Pardo J; Arruebo M Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888208 [TBL] [Abstract][Full Text] [Related]
11. Green Synthesis of Copper and Copper Oxide Nanoparticles From Brown Algae Turbinaria Species' Aqueous Extract and Its Antibacterial Properties. Raja Rajamanikkam SCR; Anbalagan G; Subramanian B; Suresh V; Sivaperumal P Cureus; 2024 Apr; 16(4):e57366. PubMed ID: 38694645 [TBL] [Abstract][Full Text] [Related]
13. Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration. Jung JH; Hwang GB; Lee JE; Bae GN Langmuir; 2011 Aug; 27(16):10256-64. PubMed ID: 21751779 [TBL] [Abstract][Full Text] [Related]
14. Chitosan nanofibers encapsulating copper oxide nanoparticles: A new approach towards multifunctional ecological membranes with high antimicrobial and antioxidant efficiency. Bejan A; Anisiei A; Andreica BI; Rosca I; Marin L Int J Biol Macromol; 2024 Mar; 260(Pt 1):129377. PubMed ID: 38262824 [TBL] [Abstract][Full Text] [Related]
15. Transport behavior of selected nanoparticles with different surface coatings in granular porous media coated with Pseudomonas aeruginosa biofilm. Tripathi S; Champagne D; Tufenkji N Environ Sci Technol; 2012 Jul; 46(13):6942-9. PubMed ID: 22148225 [TBL] [Abstract][Full Text] [Related]
16. Application of Copper Iodide Nanoparticle-Doped Film and Fabric To Inactivate SARS-CoV-2 via the Virucidal Activity of Cuprous Ions (Cu Takeda Y; Jamsransuren D; Nagao T; Fukui Y; Matsuda S; Ogawa H Appl Environ Microbiol; 2021 Nov; 87(24):e0182421. PubMed ID: 34613751 [TBL] [Abstract][Full Text] [Related]
17. On the emergence of antibacterial and antiviral copper cold spray coatings. Sousa BC; Massar CJ; Gleason MA; Cote DL J Biol Eng; 2021 Feb; 15(1):8. PubMed ID: 33627170 [TBL] [Abstract][Full Text] [Related]
18. Transparent Anti-SARS COV-2 Film from Copper(I) Oxide Incorporated in Zeolite Nanoparticles. Jampa S; Ratanatawanate C; Pimtong W; Aueviriyavit S; Chantho V; Sillapaprayoon S; Kunyanee C; Warin C; Gamonchuang J; Kumnorkaew P ACS Appl Mater Interfaces; 2022 Nov; 14(46):52334-52346. PubMed ID: 36352778 [TBL] [Abstract][Full Text] [Related]
19. Low-Voltage Bacterial and Viral Killing Using Laser-Induced Graphene-Coated Non-woven Air Filters. Gupta A; Sharma CP; Thamaraiselvan C; Pisharody L; Powell CD; Arnusch CJ ACS Appl Mater Interfaces; 2021 Dec; 13(49):59373-59380. PubMed ID: 34851621 [TBL] [Abstract][Full Text] [Related]