These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38893961)

  • 1. Impact of Size and Distribution of k-Carbides on the Hydrogen Embrittlement and Trapping Behaviors of a Fe-Mn-Al-C Low-Density Steel.
    Xiong Y; Guo X; Dong H
    Materials (Basel); 2024 Jun; 17(11):. PubMed ID: 38893961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Tempering Temperature on Hydrogen Embrittlement of SCM440 Tempered Martensitic Steel.
    Kim SG; Kim JY; Hwang B
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37630000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates.
    Chen YS; Lu H; Liang J; Rosenthal A; Liu H; Sneddon G; McCarroll I; Zhao Z; Li W; Guo A; Cairney JM
    Science; 2020 Jan; 367(6474):171-175. PubMed ID: 31919217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Positive Role of Nanometric Molybdenum-Vanadium Carbides in Mitigating Hydrogen Embrittlement in Structural Steels.
    Peral LB; Fernández-Pariente I; Colombo C; Rodríguez C; Belzunce J
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Change in Hydrogen Trapping Characteristics and Influence on Hydrogen Embrittlement Sensitivity in a Medium-Carbon, High-Strength Steel: The Effects of Heat Treatments.
    Tong Z; Wang H; Zheng W; Zhou H
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Embrittlement Mechanisms of HR3C Pipe Steel at Room Temperature in Ultra-Supercritical Unit.
    Liu X; Cao X; Zhang Z
    Nanomaterials (Basel); 2024 Feb; 14(3):. PubMed ID: 38334577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering metal-carbide hydrogen traps in steels.
    Liu PY; Zhang B; Niu R; Lu SL; Huang C; Wang M; Tian F; Mao Y; Li T; Burr PA; Lu H; Guo A; Yen HW; Cairney JM; Chen H; Chen YS
    Nat Commun; 2024 Jan; 15(1):724. PubMed ID: 38267467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study on the effects of Cr, V, and Mo carbides for hydrogen-embrittlement resistance of tempered martensitic steel.
    Lee J; Lee T; Mun DJ; Bae CM; Lee CS
    Sci Rep; 2019 Mar; 9(1):5219. PubMed ID: 30914723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of Fe-Mn-Al-C Steels after Gleeble Simulations and Hot-Rolling.
    Sozańska-Jędrasik L; Mazurkiewicz J; Matus K; Borek W
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32041206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Hydrogen Embrittlement Susceptibility of Different Types of Advanced High-Strength Steels.
    Cho S; Kim GI; Ko SJ; Yoo JS; Jung YS; Yoo YH; Kim JG
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metallographic Evaluation of Increased Susceptibility to Intermediate Embrittlement of Engine Valve Forgings Made of NCF 3015 High Nickel and Chromium Steel.
    Lachowicz MM; Zwierzchowski M; Hawryluk M; Gronostajski Z; Janik M
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of undissolved Nb carbides on mechanical properties of hydrogen-precharged tempered martensitic steel.
    Seo HJ; Jo JW; Kim JN; Kwon K; Lee J; Choi S; Lee T; Lee CS
    Sci Rep; 2020 Jul; 10(1):11704. PubMed ID: 32678163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Warm Pre-Strain: Strengthening the Metastable 304L Austenitic Stainless Steel without Compromising Its Hydrogen Embrittlement Resistance.
    Wang Y; Zhou Z; Wu W; Gong J
    Materials (Basel); 2017 Nov; 10(11):. PubMed ID: 29160830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the Interaction between a Steel Microstructure and Hydrogen.
    Depover T; Laureys A; Pérez Escobar D; Van den Eeckhout E; Wallaert E; Verbeken K
    Materials (Basel); 2018 Apr; 11(5):. PubMed ID: 29710803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Significance of Melt Pool Structure on the Hydrogen Embrittlement Behavior of a Selective Laser-Melted 316L Austenitic Stainless Steel.
    Liu J; Yang H; Meng L; Liu D; Xu T; Xu D; Shao X; Shao C; Li S; Zhang P; Zhang Z
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano-mechanical properties of Fe-Mn-Al-C lightweight steels.
    Rahnama A; Kotadia H; Clark S; Janik V; Sridhar S
    Sci Rep; 2018 Jun; 8(1):9065. PubMed ID: 29899535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbides and possible hydrogen irreversible trapping sites in ultrahigh strength round steel.
    Cheng XY; Li H; Cheng XB
    Micron; 2017 Dec; 103():22-28. PubMed ID: 28942370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A New Explanation for the Effect of Dynamic Strain Aging on Negative Strain Rate Sensitivity in Fe-30Mn-9Al-1C Steel.
    Xing J; Hou L; Du H; Liu B; Wei Y
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31635146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Mn on the solution enthalpy of hydrogen in austenitic Fe-Mn alloys: a first-principles study.
    von Appen J; Dronskowski R; Chakrabarty A; Hickel T; Spatschek R; Neugebauer J
    J Comput Chem; 2014 Dec; 35(31):2239-44. PubMed ID: 25250795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen embrittlement property of a 1700-MPa-class ultrahigh-strength tempered martensitic steel.
    Li S; Akiyama E; Yuuji K; Tsuzaki K; Uno N; Zhang B
    Sci Technol Adv Mater; 2010 Apr; 11(2):025005. PubMed ID: 27877333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.