These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38894091)

  • 21. Applicability of Cost-Effective GNSS Sensors for Crustal Deformation Studies.
    Tunini L; Zuliani D; Magrin A
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009892
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance Assessment of Reference Modelling Methods for Defect Evaluation in Asphalt Concrete.
    Putkiranta P; Kurkela M; Ingman M; Keitaanniemi A; El Issaoui A; Kaartinen H; Honkavaara E; Hyyppä H; Hyyppä J; Vaaja MT
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960282
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TLS-Detectable Plane Changes for Deformation Monitoring.
    Kregar K; Marjetič A; Savšek S
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746274
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Geodetic and Remote-Sensing Sensors for Dam Deformation Monitoring.
    Scaioni M; Marsella M; Crosetto M; Tornatore V; Wang J
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30380693
    [TBL] [Abstract][Full Text] [Related]  

  • 25. VLBI measurement of the vector baseline between geodetic antennas at Kokee Park Geophysical Observatory, Hawaii.
    Niell AE; Barrett JP; Cappallo RJ; Corey BE; Elosegui P; Mondal D; Rajagopalan G; Ruszczyk CA; Titus MA
    J Geod; 2021; 95(6):65. PubMed ID: 34720449
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of terrestrial laser scanning technology for long term high precision deformation monitoring.
    Vezočnik R; Ambrožič T; Sterle O; Bilban G; Pfeifer N; Stopar B
    Sensors (Basel); 2009; 9(12):9873-95. PubMed ID: 22303152
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Testing photogrammetry-based techniques for three-dimensional surface documentation in forensic pathology.
    Urbanová P; Hejna P; Jurda M
    Forensic Sci Int; 2015 May; 250():77-86. PubMed ID: 25818581
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system.
    Liu W; Cheung Y; Sabouri P; Arai TJ; Sawant A; Ruan D
    Med Phys; 2015 Nov; 42(11):6564-71. PubMed ID: 26520747
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of Depth Camera and Terrestrial Laser Scanner in Monitoring Structural Deflections.
    Maru MB; Lee D; Tola KD; Park S
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33396836
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using the scanners and drone for comparison of point cloud accuracy at traffic accident analysis.
    Kamnik R; Nekrep Perc M; Topolšek D
    Accid Anal Prev; 2020 Feb; 135():105391. PubMed ID: 31835075
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Testing Multi-Frequency Low-Cost GNSS Receivers for Geodetic Monitoring Purposes.
    Hamza V; Stopar B; Ambrožič T; Turk G; Sterle O
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32764406
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Towards Semantic Photogrammetry: Generating Semantically Rich Point Clouds from Architectural Close-Range Photogrammetry.
    Murtiyoso A; Pellis E; Grussenmeyer P; Landes T; Masiero A
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161712
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automatic extraction and measurement of individual trees from mobile laser scanning point clouds of forests.
    Bienert A; Georgi L; Kunz M; von Oheimb G; Maas HG
    Ann Bot; 2021 Oct; 128(6):787-804. PubMed ID: 34232276
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How to Efficiently Determine the Range Precision of 3D Terrestrial Laser Scanners.
    Schmitz B; Holst C; Medic T; Lichti DD; Kuhlmann H
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30917502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Remarks on Geomatics Measurement Methods Focused on Forestry Inventory.
    Pavelka K; Matoušková E; Pavelka K
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687832
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of accuracy of photogrammetry with 3D scanning and conventional impression method for craniomaxillofacial defects using a software analysis.
    Beri A; Pisulkar SK; Bagde AD; Bansod A; Dahihandekar C; Paikrao B
    Trials; 2022 Dec; 23(1):1048. PubMed ID: 36575547
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Direct Georeferencing Method for Terrestrial Laser Scanning Using GNSS Data and the Vertical Deflection from Global Earth Gravity Models.
    Osada E; Sośnica K; Borkowski A; Owczarek-Wesołowska M; Gromczak A
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28672795
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Cost-Effective Geodetic Strainmeter Based on Dual Coaxial Cable Bragg Gratings.
    Fu J; Wang X; Wei T; Wei M; Shen Y
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28417925
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low-Cost Dual-Frequency GNSS Receivers and Antennas for Surveying in Urban Areas.
    Hamza V; Stopar B; Sterle O; Pavlovčič-Prešeren P
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36905063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.