These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 38894172)

  • 1. The Fault Diagnosis of Rolling Bearings Is Conducted by Employing a Dual-Branch Convolutional Capsule Neural Network.
    Lu W; Liu J; Lin F
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Feature Extraction Network Based on Acoustic Signal Feature Learning for Bearing Fault Diagnosis.
    Luo Y; Lu W; Kang S; Tian X; Kang X; Sun F
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fault Diagnosis Method of Special Vehicle Bearing Based on Multi-Scale Feature Fusion and Transfer Adversarial Learning.
    Xiao Z; Li D; Yang C; Chen W
    Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal Time Frequency Fusion Symmetric Dot Pattern Bearing Fault Feature Enhancement and Diagnosis.
    Liang G; Song X; Liao Z; Jia B
    Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39000965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bearing Fault Diagnosis with a Feature Fusion Method Based on an Ensemble Convolutional Neural Network and Deep Neural Network.
    Li H; Huang J; Ji S
    Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31052295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. WPD-Enhanced Deep Graph Contrastive Learning Data Fusion for Fault Diagnosis of Rolling Bearing.
    Liu R; Wang X; Kumar A; Sun B; Zhou Y
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bearing Fault Diagnosis Method Based on Deep Convolutional Neural Network and Random Forest Ensemble Learning.
    Xu G; Liu M; Jiang Z; Söffker D; Shen W
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30832449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intelligent fault diagnosis of rolling bearings under varying operating conditions based on domain-adversarial neural network and attention mechanism.
    Wu H; Li J; Zhang Q; Tao J; Meng Z
    ISA Trans; 2022 Nov; 130():477-489. PubMed ID: 35491253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fault Diagnosis Method for Rolling Mill Multi Row Bearings Based on AMVMD-MC1DCNN under Unbalanced Dataset.
    Zhao C; Sun J; Lin S; Peng Y
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Fault Diagnosis Method for Rolling Bearings Based on Improved Residual Shrinkage Network Combined with Transfer Learning.
    Sun T; Gao J
    Sensors (Basel); 2024 Sep; 24(17):. PubMed ID: 39275611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fault Diagnosis of Rolling Bearings Based on a Residual Dilated Pyramid Network and Full Convolutional Denoising Autoencoder.
    Shi H; Chen J; Si J; Zheng C
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33050210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fault diagnosis of rolling bearings using an Improved Multi-Scale Convolutional Neural Network with Feature Attention mechanism.
    Xu Z; Li C; Yang Y
    ISA Trans; 2021 Apr; 110():379-393. PubMed ID: 33158549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intelligent Rolling Bearing Fault Diagnosis Method Using Symmetrized Dot Pattern Images and CBAM-DRN.
    Cui W; Meng G; Gou T; Wang A; Xiao R; Zhang X
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Wasserstein Generative Adversarial Network and Convolutional Neural Network under Unbalanced Dataset.
    Tang H; Gao S; Wang L; Li X; Li B; Pang S
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A New Dual-Input Deep Anomaly Detection Method for Early Faults Warning of Rolling Bearings.
    Kang Y; Chen G; Wang H; Pan W; Wei X
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37766068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rolling Bearing Fault Diagnosis Based on Markov Transition Field and Residual Network.
    Yan J; Kan J; Luo H
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel deep learning framework for rolling bearing fault diagnosis enhancement using VAE-augmented CNN model.
    Wang Y; Li D; Li L; Sun R; Wang S
    Heliyon; 2024 Aug; 10(15):e35407. PubMed ID: 39166054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Intelligent Fault Diagnosis Method for Bearings with Multi-Source Data and Improved GASA.
    Hu Q; Fu X; Guan Y; Wu Q; Liu S
    Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A New Bearing Fault Diagnosis Method Based on Capsule Network and Markov Transition Field/Gramian Angular Field.
    Han B; Zhang H; Sun M; Wu F
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of a new one-dimensional deep convolutional neural network for intelligent fault diagnosis of rolling bearings.
    Xie S; Ren G; Zhu J
    Sci Prog; 2020; 103(3):36850420951394. PubMed ID: 32880535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.