These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38894223)

  • 1. Confidence Interval Estimation for Cutting Tool Wear Prediction in Turning Using Bootstrap-Based Artificial Neural Networks.
    Colantonio L; Equeter L; Dehombreux P; Ducobu F
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Tool Wear Using Artificial Neural Networks during Turning of Hardened Steel.
    Twardowski P; Wiciak-Pikuła M
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31546732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cutting Forces and Tool Wear Investigation during Turning of Sintered Nickel-Cobalt Alloy with CBN Tools.
    Zębala W; Struzikiewicz G; Rumian K
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33810472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization and Analysis of Surface Roughness, Flank Wear and 5 Different Sensorial Data via Tool Condition Monitoring System in Turning of AISI 5140.
    Kuntoğlu M; Aslan A; Sağlam H; Pimenov DY; Giasin K; Mikolajczyk T
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32764450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic Identification of Tool Wear Based on Thermography and a Convolutional Neural Network during the Turning Process.
    Brili N; Ficko M; Klančnik S
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33803442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation and Optimization of Tool Wear in Conventional Turning of 709M40 Alloy Steel Using Support Vector Machine (SVM) with Bayesian Optimization.
    Alajmi MS; Almeshal AM
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of the Dry Turning Process of Ti48Al2Cr2Nb Aluminide Based on the Cutting Tool Configuration.
    García-Martínez E; Miguel V; Martínez-Martínez A; Coello J; Naranjo JA; Manjabacas MC
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep convolutional neural network and IoT technology for healthcare.
    Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK
    Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generic Cutting Force Modeling with Comprehensively Considering Tool Edge Radius, Tool Flank Wear and Tool Runout in Micro-End Milling.
    Gao S; Duan X; Zhu K; Zhang Y
    Micromachines (Basel); 2022 Oct; 13(11):. PubMed ID: 36363826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multivariate time series data of milling processes with varying tool wear and machine tools.
    Denkena B; Klemme H; Stiehl TH
    Data Brief; 2023 Oct; 50():109574. PubMed ID: 37808546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tool Wear Prediction in Ti-6Al-4V Machining through Multiple Sensor Monitoring and PCA Features Pattern Recognition.
    Caggiano A
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29522443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Multivariate Cutting Force-Based Tool Wear Monitoring Method Using One-Dimensional Convolutional Neural Network.
    Yang X; Yuan R; Lv Y; Li L; Song H
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Machine Learning-Based Methodology for Tool Wear Prediction Using Acoustic Emission Signals.
    Ferrando Chacón JL; Fernández de Barrena T; García A; Sáez de Buruaga M; Badiola X; Vicente J
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remaining Useful-Life Prediction of the Milling Cutting Tool Using Time-Frequency-Based Features and Deep Learning Models.
    Sayyad S; Kumar S; Bongale A; Kotecha K; Abraham A
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tool Wear Prediction When Machining with Self-Propelled Rotary Tools.
    Umer U; Mian SH; Mohammed MK; Abidi MH; Moiduddin K; Kishawy H
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fundamental Investigation into Tool Wear and Surface Quality in High-Speed Machining of Ti6Al4V Alloy.
    Abbas AT; Al Bahkali EA; Alqahtani SM; Abdelnasser E; Naeim N; Elkaseer A
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tool Condition Monitoring of the Cutting Capability of a Turning Tool Based on Thermography.
    Brili N; Ficko M; Klančnik S
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34641006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tool Wear Prediction Based on Artificial Neural Network during Aluminum Matrix Composite Milling.
    Wiciak-Pikuła M; Felusiak-Czyryca A; Twardowski P
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33066308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Surface Features for Increased Heat Dissipation on Tool Wear.
    Tamil Alagan N; Beno T; Hoier P; Klement U; Wretland A
    Materials (Basel); 2018 Apr; 11(5):. PubMed ID: 29693579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tribological Performance of Micro-Groove Tools of Improving Tool Wear Resistance in Turning AISI 304 Process.
    Wu J; Zhan G; He L; Zou Z; Zhou T; Du F
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32182875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.