BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38894224)

  • 1. Study on TPD Phasemeter to Suppress Low-Frequency Amplitude Fluctuation and Improve Fast-Acquiring Range for GW Detection.
    Ming M; Zhang J; Duan H; Li Z; Huang X; Tu L; Yeh HC
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evaluation of phasemeter prototype performance for the space gravitational waves detection.
    Liu HS; Dong YH; Li YQ; Luo ZR; Jin G
    Rev Sci Instrum; 2014 Feb; 85(2):024503. PubMed ID: 24593376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A low-noise analog frontend design for the Taiji phasemeter prototype.
    Liu HS; Yu T; Luo ZR
    Rev Sci Instrum; 2021 May; 92(5):054501. PubMed ID: 34243339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A phasemeter concept for space applications that integrates an autonomous signal acquisition stage based on the discrete wavelet transform.
    Ales F; Mandel O; Gath P; Johann U; Braxmaier C
    Rev Sci Instrum; 2015 Aug; 86(8):084502. PubMed ID: 26329214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental scheme and noise analysis of weak-light phase locked loop for large-scale intersatellite laser interferometer.
    Liang YR; Feng YJ; Xiao GY; Jiang YZ; Li L; Jin XL
    Rev Sci Instrum; 2021 Dec; 92(12):124501. PubMed ID: 34972474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Readout for intersatellite laser interferometry: Measuring low frequency phase fluctuations of high-frequency signals with microradian precision.
    Gerberding O; Diekmann C; Kullmann J; Tröbs M; Bykov I; Barke S; Brause NC; Esteban Delgado JJ; Schwarze TS; Reiche J; Danzmann K; Rasmussen T; Hansen TV; Enggaard A; Pedersen SM; Jennrich O; Suess M; Sodnik Z; Heinzel G
    Rev Sci Instrum; 2015 Jul; 86(7):074501. PubMed ID: 26233398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-frequency signal acquisition and phase measurement in space gravitational wave detection.
    Zhang QT; Liu HS; Dong P; Li P; Luo ZR
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38743572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Note: A new method for directly reducing the sampling jitter noise of the digital phasemeter.
    Liang YR
    Rev Sci Instrum; 2018 Mar; 89(3):036106. PubMed ID: 29604779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a phasemeter for real-time measurements of the average plasma density with the microwave interferometer of the tokamak T-15MD.
    Drozd A; Sergeev D
    Rev Sci Instrum; 2022 Jun; 93(6):063501. PubMed ID: 35778047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental verification of clock noise transfer and components for space based gravitational wave detectors.
    Sweeney D; Mueller G
    Opt Express; 2012 Nov; 20(23):25603-12. PubMed ID: 23187379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced inter-spacecraft offset frequency setting strategy for the Taiji program based on a two-stage optimization algorithm.
    Zhang J; Ma X; Zhao M; Peng X; Gao C; Yang Z
    Appl Opt; 2023 Jun; 62(16):4370-4380. PubMed ID: 37706930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Picometer-Stable Hexagonal Optical Bench to Verify LISA Phase Extraction Linearity and Precision.
    Schwarze TS; Fernández Barranco G; Penkert D; Kaufer M; Gerberding O; Heinzel G
    Phys Rev Lett; 2019 Mar; 122(8):081104. PubMed ID: 30932596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arm locking using laser frequency comb.
    Wu H; Ke J; Wang PP; Tan YJ; Luo J; Shao CG
    Opt Express; 2022 Feb; 30(5):8027-8048. PubMed ID: 35299553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of thermal fluctuations in a cryogenic laser interferometric gravitational wave detector.
    Uchiyama T; Miyoki S; Telada S; Yamamoto K; Ohashi M; Agatsuma K; Arai K; Fujimoto MK; Haruyama T; Kawamura S; Miyakawa O; Ohishi N; Saito T; Shintomi T; Suzuki T; Takahashi R; Tatsumi D
    Phys Rev Lett; 2012 Apr; 108(14):141101. PubMed ID: 22540781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced phasemeter for deep phase modulation interferometry.
    Schwarze TS; Gerberding O; Cervantes FG; Heinzel G; Danzmann K
    Opt Express; 2014 Jul; 22(15):18214-23. PubMed ID: 25089440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shot-noise-limited laser power stabilization with a high-power photodiode array.
    Kwee P; Willke B; Danzmann K
    Opt Lett; 2009 Oct; 34(19):2912-4. PubMed ID: 19794765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gravitational wave detection using laser interferometry beyond the standard quantum limit.
    Heurs M
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2120):. PubMed ID: 29661977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A three-dimensional laser interferometer gravitational-wave detector.
    Liu M; Gong B
    Sci Rep; 2020 Oct; 10(1):16285. PubMed ID: 33004863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absolute Ranging with Time Delay Interferometry for Space-Borne Gravitational Wave Detection.
    Luo D; Xu M; Wang P; Wu H; Shao C
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zeeman laser interferometer errors for high-precision measurements.
    Xie Y; Wu YZ
    Appl Opt; 1992 Mar; 31(7):881-4. PubMed ID: 20720696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.