BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38894244)

  • 1. Using Inertial Measurement Units to Examine Selected Joint Kinematics in a Road Cycling Sprint: A Series of Single Cases.
    Morbey S; Tronslien M; Kong K; Chapman DW; Netto K
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in body position on the bike during seated sprint cycling: Applications to bike fitting.
    Bini R; Daly L; Kingsley M
    Eur J Sport Sci; 2020 Feb; 20(1):35-42. PubMed ID: 31057063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Power output, cadence, and torque are similar between the forward standing and traditional sprint cycling positions.
    Merkes PFJ; Menaspà P; Abbiss CR
    Scand J Med Sci Sports; 2020 Jan; 30(1):64-73. PubMed ID: 31544261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinematic characteristics of barefoot sprinting in habitually shod children.
    Mizushima J; Seki K; Keogh JWL; Maeda K; Shibata A; Koyama H; Ohyama-Byun K
    PeerJ; 2018; 6():e5188. PubMed ID: 30013846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of three types of resisted sprint training devices on the kinematics of sprinting at maximum velocity.
    Alcaraz PE; Palao JM; Elvira JL; Linthorne NP
    J Strength Cond Res; 2008 May; 22(3):890-7. PubMed ID: 18438225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of weighted vests and sled towing on sprint kinematics.
    Cronin J; Hansen K; Kawamori N; McNair P
    Sports Biomech; 2008 May; 7(2):160-72. PubMed ID: 18610770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metatarsophalangeal joint function during sprinting: a comparison of barefoot and sprint spike shod foot conditions.
    Smith G; Lake M; Lees A
    J Appl Biomech; 2014 Apr; 30(2):206-12. PubMed ID: 24042098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reducing Aerodynamic Drag by Adopting a Novel Road-Cycling Sprint Position.
    Merkes PFJ; Menaspà P; Abbiss CR
    Int J Sports Physiol Perform; 2019 Jul; 14(6):733–738. PubMed ID: 30427244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Load effects of thigh wearable resistance on angular and linear kinematics and kinetics during non-motorised treadmill sprint-running.
    Macadam P; Nuell S; Cronin JB; Diewald S; Rowley R; Forster J; Fosch P
    Eur J Sport Sci; 2021 Apr; 21(4):531-538. PubMed ID: 32357805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sagittal plane kinematics during the transition run in triathletes.
    Rendos NK; Harrison BC; Dicharry JM; Sauer LD; Hart JM
    J Sci Med Sport; 2013 May; 16(3):259-65. PubMed ID: 22819075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimisation of sprinting performance in running, cycling and speed skating.
    van Ingen Schenau GJ; de Koning JJ; de Groot G
    Sports Med; 1994 Apr; 17(4):259-75. PubMed ID: 8009139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of a Body-Weight Supporting Kite on Sprint Running Kinematics in Well-Trained Sprinters.
    Kratky S; Buchecker M; Pfusterschmied J; Szekely C; Müller E
    J Strength Cond Res; 2016 Jan; 30(1):102-8. PubMed ID: 26270692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Center of mass velocity comparison using a whole body magnetic inertial measurement unit system and force platforms in well trained sprinters in straight-line and curve sprinting.
    Millot B; Blache P; Dinu D; Arnould A; Jusseaume J; Hanon C; Slawinski J
    Gait Posture; 2023 Jan; 99():90-97. PubMed ID: 36368241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in sprinting performance and kinematics between preadolescent boys who are fore/mid and rear foot strikers.
    Miyamoto A; Takeshita T; Yanagiya T
    PLoS One; 2018; 13(10):e0205906. PubMed ID: 30335813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sprint kinematics of athletes with lower-limb amputations.
    Buckley JG
    Arch Phys Med Rehabil; 1999 May; 80(5):501-8. PubMed ID: 10326911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous three dimensional analysis of running mechanics during a marathon by means of inertial magnetic measurement units to objectify changes in running mechanics.
    Reenalda J; Maartens E; Homan L; Buurke JHJ
    J Biomech; 2016 Oct; 49(14):3362-3367. PubMed ID: 27616268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of parachute-resisted sprinting on running mechanics in collegiate track athletes.
    Paulson S; Braun WA
    J Strength Cond Res; 2011 Jun; 25(6):1680-5. PubMed ID: 21358426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical Demands of Sprinting in Professional Road Cycling.
    Menaspà P; Quod M; Martin DT; Peiffer JJ; Abbiss CR
    Int J Sports Med; 2015 Nov; 36(13):1058-62. PubMed ID: 26252551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of 3D Knee Joint Angles during Cycling Using Inertial Sensors: Accuracy of a Novel Sensor-to-Segment Calibration Procedure Based on Pedaling Motion.
    Cordillet S; Bideau N; Bideau B; Nicolas G
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31151200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The between-day repeatability, standard error of measurement and minimal detectable change for discrete kinematic parameters during treadmill running.
    Bramah C; Preece SJ; Gill N; Herrington L
    Gait Posture; 2021 Mar; 85():211-216. PubMed ID: 33610824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.