These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38894279)

  • 1. Application of Multi-Channel Synchronized Dynamic Strain Gauges in Monitoring the Neutral Axis Position and Prestress Loss of Box Girder Bridges.
    Lin SK; Lin YC; Tong JH; Cheng HT; Tsai HC; Wang JL
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Edge Computing in Structural Health Monitoring of Simply Supported PCI Girder Bridges.
    Lin YC; Hsiao CY; Tong JH; Liao CP; Song ST; Tsai HC; Wang JL
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the Superiority of Lightweight-Aggregate-Concrete Prestressed Box Girders in Terms of Durability and Prestress Loss.
    Chen HJ; Kuo CC; Tang CW
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexural Behavior of Damaged Hollow RC Box Girders Repaired with Prestressed CFRP.
    Guo X; Zeng L; Zheng X; Li B; Deng Z
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-Term Prestress Loss Calculation Considering the Interaction of Concrete Shrinkage, Concrete Creep, and Stress Relaxation.
    Han W; Tian P; Lv Y; Zou C; Liu T
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of Prestress Force Distribution in Multi-Strand System of Prestressed Concrete Structures Using Field Data Measured by Electromagnetic Sensor.
    Cho K; Cho JR; Kim ST; Park SY; Kim YJ; Park YH
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27548172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of Bridge Prestress Loss under Fatigue Load Based on PSO-BP Neural Network.
    Wang Y
    Comput Intell Neurosci; 2021; 2021():4520571. PubMed ID: 34335715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of Prestress Force Distribution in the Multi-Strand System of Prestressed Concrete Structures.
    Cho K; Park SY; Cho JR; Kim ST; Park YH
    Sensors (Basel); 2015 Jun; 15(6):14079-92. PubMed ID: 26083230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental-Numerical Study on the Flexural Ultimate Capacity of Prestressed Concrete Box Girders Subjected to Collision.
    Li Y; Yu Z; Wu Q; Liu Y; Wang S
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A sensor-type PC strand with an embedded FBG sensor for monitoring prestress forces.
    Kim ST; Park Y; Park SY; Cho K; Cho JR
    Sensors (Basel); 2015 Jan; 15(1):1060-70. PubMed ID: 25580903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Evaluation of Shrinkage, Creep and Prestress Losses in Lightweight Aggregate Concrete with Sintered Fly Ash.
    Szydłowski RS; Łabuzek B
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Health Monitoring of a Prestressed Concrete Bridge Based on Statistical Pattern Recognition of Continuous Dynamic Measurements Over 14 Years.
    Hu WH; Tang DH; Teng J; Said S; Rohrmann RG
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30477190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of structural repairs on the load rating and reliability of a prestressed concrete bridge.
    Debees M; Luleci F; Catbas FN
    Adv Bridge Eng; 2023; 4(1):8. PubMed ID: 37124422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue Behavior of Heavy-Haul Railway Prestressed Concrete Beams Based on Vehicle-Bridge Coupling Vibration.
    Song L; Liu R; Cui C; Yu Z; Zhang W
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Full-scale prestress loss monitoring of damaged RC structures using distributed optical fiber sensing technology.
    Lan C; Zhou Z; Ou J
    Sensors (Basel); 2012; 12(5):5380-94. PubMed ID: 22778590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Integrated Machine Learning Algorithm for Separating the Long-Term Deflection Data of Prestressed Concrete Bridges.
    Ye X; Chen X; Lei Y; Fan J; Mei L
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30469405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Prestress Loss Distribution during Pre-Tensioning and Post-Tensioning Using Long-Gauge Fiber Bragg Grating Sensors.
    Shen S; Wang Y; Ma SL; Huang D; Wu ZH; Guo X
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30477164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-Dependent Seismic Fragility of Typical Concrete Girder Bridges under Chloride-Induced Corrosion.
    Liu X; Zhang W; Sun P; Liu M
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of The Working Performance of Large Curvature Prestressed Concrete Box Girder Bridges.
    Yuan J; Luo L; Zheng Y; Yu S; Shi J; Wang J; Shen J
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the Early-Age Time-Dependent Behaviors of a Prestressed Concrete Beam by Using Physics-Informed Neural Network.
    Park HW; Hwang JH
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.