BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38894311)

  • 1. High-Density Electroencephalogram Facilitates the Detection of Small Stimuli in Code-Modulated Visual Evoked Potential Brain-Computer Interfaces.
    Sun Q; Zhang S; Dong G; Pei W; Gao X; Wang Y
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A calibration-free c-VEP based BCI employing narrow-band random sequences.
    Zheng L; Dong Y; Tian S; Pei W; Gao X; Wang Y
    J Neural Eng; 2024 Apr; 21(2):. PubMed ID: 38513290
    [No Abstract]   [Full Text] [Related]  

  • 3. A Brain-Computer Interface Based on Miniature-Event-Related Potentials Induced by Very Small Lateral Visual Stimuli.
    Xu M; Xiao X; Wang Y; Qi H; Jung TP; Ming D
    IEEE Trans Biomed Eng; 2018 May; 65(5):1166-1175. PubMed ID: 29683431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 120-target brain-computer interface based on code-modulated visual evoked potentials.
    Sun Q; Zheng L; Pei W; Gao X; Wang Y
    J Neurosci Methods; 2022 Jun; 375():109597. PubMed ID: 35427686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-speed BCI based on code modulation VEP.
    Bin G; Gao X; Wang Y; Li Y; Hong B; Gao S
    J Neural Eng; 2011 Apr; 8(2):025015. PubMed ID: 21436527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulus Specificity of Brain-Computer Interfaces Based on Code Modulation Visual Evoked Potentials.
    Wei Q; Feng S; Lu Z
    PLoS One; 2016; 11(5):e0156416. PubMed ID: 27243454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Frequency Discrete-Interval Binary Sequence in Asynchronous C-VEP-Based BCI for Visual Fatigue Reduction.
    Lai E; Mai X; Ji M; Li S; Meng J
    IEEE J Biomed Health Inform; 2024 May; 28(5):2769-2780. PubMed ID: 38442053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing Detection of SSVEPs for a High-Speed Brain Speller Using Task-Related Component Analysis.
    Nakanishi M; Wang Y; Chen X; Wang YT; Gao X; Jung TP
    IEEE Trans Biomed Eng; 2018 Jan; 65(1):104-112. PubMed ID: 28436836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VEP-based brain-computer interfaces modulated by Golay complementary series for improving performance.
    Wei Q; Huang Y; Li M; Lu Z
    Technol Health Care; 2016 Apr; 24 Suppl 2():S541-9. PubMed ID: 27163316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial decoupling of targets and flashing stimuli for visual brain-computer interfaces.
    Waytowich NR; Krusienski DJ
    J Neural Eng; 2015 Jun; 12(3):036006. PubMed ID: 25875047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses.
    Baek HJ; Kim HS; Heo J; Lim YG; Park KS
    J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel c-VEP BCI Paradigm for Increasing the Number of Stimulus Targets Based on Grouping Modulation With Different Codes.
    Wei Q; Liu Y; Gao X; Wang Y; Yang C; Lu Z; Gong H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1178-1187. PubMed ID: 29877842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A High-Speed SSVEP-Based BCI Using Dry EEG Electrodes.
    Xing X; Wang Y; Pei W; Guo X; Liu Z; Wang F; Ming G; Zhao H; Gui Q; Chen H
    Sci Rep; 2018 Oct; 8(1):14708. PubMed ID: 30279463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of Information Transfer Rates Using a Hybrid EEG-NIRS Brain-Computer Interface with a Short Trial Length: Offline and Pseudo-Online Analyses.
    Shin J; Kim DW; Müller KR; Hwang HJ
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29874804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high-performance brain switch based on code-modulated visual evoked potentials.
    Zheng L; Pei W; Gao X; Zhang L; Wang Y
    J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 34996051
    [No Abstract]   [Full Text] [Related]  

  • 17. How to build a fast and accurate code-modulated brain-computer interface.
    Ramírez Torres JA; Daly I
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33887702
    [No Abstract]   [Full Text] [Related]  

  • 18. Brain-computer interfaces based on code-modulated visual evoked potentials (c-VEP): a literature review.
    Martínez-Cagigal V; Thielen J; Santamaría-Vázquez E; Pérez-Velasco S; Desain P; Hornero R
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34763331
    [No Abstract]   [Full Text] [Related]  

  • 19. Orientation-modulated attention effect on visual evoked potential: Application for PIN system using brain-computer interface.
    Wilaiprasitporn T; Yagi T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2327-30. PubMed ID: 26736759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces.
    Chang MH; Baek HJ; Lee SM; Park KS
    Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.