BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38894328)

  • 1. Design of Path-Planning System for Interventional Thermal Ablation of Liver Tumors Based on CT Images.
    Song Z; Ding F; Wu W; Zhou Z; Wu S
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Automatic Needle Puncture Path-Planning Method for Thermal Ablation of Lung Tumors.
    Wang Z; Wu W; Wu S; Zhou Z; Zhang H
    Diagnostics (Basel); 2024 Jan; 14(2):. PubMed ID: 38275462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible needle puncture path planning for liver tumors based on deep reinforcement learning.
    Hu W; Jiang H; Wang M
    Phys Med Biol; 2022 Sep; 67(19):. PubMed ID: 36067775
    [No Abstract]   [Full Text] [Related]  

  • 4. Computer-assisted needle trajectory planning and mathematical modeling for liver tumor thermal ablation: A review.
    Zhang R; Wu SC; Wu WW; Gao HJ; Zhou ZH
    Math Biosci Eng; 2019 May; 16(5):4846-4872. PubMed ID: 31499693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Method for puncture trajectory planning in liver tumors thermal ablation based on NSGA-III.
    Dong Q; Cao M; Gu F; Gong W; Cai Q
    Technol Health Care; 2022; 30(5):1243-1256. PubMed ID: 35342068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Versatile multi-constrained planning for thermal ablation of large liver tumors.
    Li R; Shi Y; Si W; Huang L; Zhuang B; Weinmann M; Klein R; Heng PA
    Comput Med Imaging Graph; 2021 Dec; 94():101993. PubMed ID: 34710628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-stage puncture path planning algorithm of ablation needles for percutaneous radiofrequency ablation of liver tumors.
    Luo M; Jiang H; Shi T
    Comput Biol Med; 2022 Jun; 145():105506. PubMed ID: 35429832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape-intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images.
    Wang J; Cheng Y; Guo C; Wang Y; Tamura S
    Int J Comput Assist Radiol Surg; 2016 May; 11(5):817-26. PubMed ID: 26646416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-security automatic path planning of radiofrequency ablation for liver tumors.
    Li J; Gao H; Shen N; Wu D; Feng L; Hu P
    Comput Methods Programs Biomed; 2023 Dec; 242():107769. PubMed ID: 37714019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liver tumor segmentation based on 3D convolutional neural network with dual scale.
    Meng L; Tian Y; Bu S
    J Appl Clin Med Phys; 2020 Jan; 21(1):144-157. PubMed ID: 31793212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supporting diagnostics and therapy planning for percutaneous ablation of liver and abdominal tumors and pre-clinical evaluation.
    Spinczyk D; Badura A; Sperka P; Stronczek M; Pyciński B; Juszczyk J; Czajkowska J; Biesok M; Rudzki M; Więcławek W; Zarychta P; Badura P; Woloshuk A; Żyłkowski J; Rosiak G; Konecki D; Milczarek K; Rowiński O; Piętka E
    Comput Med Imaging Graph; 2019 Dec; 78():101664. PubMed ID: 31635911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MiMed liver: a planning system for liver surgery.
    Shevchenko N; Seidl B; Schwaiger J; Markert M; Lueth TC
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1882-5. PubMed ID: 21096423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preoperative trajectory planning for percutaneous procedures in deformable environments.
    Hamzé N; Peterlík I; Cotin S; Essert C
    Comput Med Imaging Graph; 2016 Jan; 47():16-28. PubMed ID: 26629592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple objective planning for thermal ablation of liver tumors.
    Liang L; Cool D; Kakani N; Wang G; Ding H; Fenster A
    Int J Comput Assist Radiol Surg; 2020 Nov; 15(11):1775-1786. PubMed ID: 32880777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards quantitative and intuitive percutaneous tumor puncture via augmented virtual reality.
    Li R; Tong Y; Yang T; Guo J; Si W; Zhang Y; Klein R; Heng PA
    Comput Med Imaging Graph; 2021 Jun; 90():101905. PubMed ID: 33848757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours.
    Li D; Liu L; Chen J; Li H; Yin Y; Ibragimov B; Xing L
    Phys Med Biol; 2017 Jan; 62(1):272-288. PubMed ID: 27991439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing and accounting for the impact of respiratory motion on FDG uptake and viable volume for liver lesions in free-breathing PET using respiration-suspended PET images as reference.
    Li G; Schmidtlein CR; Burger IA; Ridge CA; Solomon SB; Humm JL
    Med Phys; 2014 Sep; 41(9):091905. PubMed ID: 25186392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A heuristic method for rapid and automatic radiofrequency ablation planning of liver tumors.
    Li R; An C; Wang S; Wang G; Zhao L; Yu Y; Wang L
    Int J Comput Assist Radiol Surg; 2023 Dec; 18(12):2213-2221. PubMed ID: 37145252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utility of 3D Reconstruction of 2D Liver Computed Tomography/Magnetic Resonance Images as a Surgical Planning Tool for Residents in Liver Resection Surgery.
    Yeo CT; MacDonald A; Ungi T; Lasso A; Jalink D; Zevin B; Fichtinger G; Nanji S
    J Surg Educ; 2018; 75(3):792-797. PubMed ID: 28822820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SADSNet: A robust 3D synchronous segmentation network for liver and liver tumors based on spatial attention mechanism and deep supervision.
    Yang S; Liang Y; Wu S; Sun P; Chen Z
    J Xray Sci Technol; 2024; 32(3):707-723. PubMed ID: 38552134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.