These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38894425)

  • 1. Possibilities of an Electronic Nose on Piezoelectric Sensors with Polycomposite Coatings to Investigate the Microbiological Indicators of Milk.
    Shuba A; Umarkhanov R; Bogdanova E; Anokhina E; Burakova I
    Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Piezoelectric Gas Sensors with Polycomposite Coatings in Biomedical Application.
    Shuba A; Kuchmenko T; Umarkhanov R
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noninvasive Detection of Bacterial Infection in Children Using Piezoelectric E-Nose.
    Kuchmenko T; Menzhulina D; Shuba A
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid methods and sensors for milk quality monitoring and spoilage detection.
    Poghossian A; Geissler H; Schöning MJ
    Biosens Bioelectron; 2019 Sep; 140():111272. PubMed ID: 31170654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrimination of Two Cultivars of
    Long Q; Li Z; Han B; Gholam Hosseini H; Zhou H; Wang S; Luo D
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30704021
    [No Abstract]   [Full Text] [Related]  

  • 6. [The study of the raw milk contamination by bacteria of the genus Campylobacter using traditional microbiological methods and quantitative PCR assay].
    Efimochkina NR; Stetsenko VV; Markova YM; Bykova IB; Pichugina TV; Polyanina AS; Minaeva LP; Sheveleva SA
    Vopr Pitan; 2019; 88(5):17-23. PubMed ID: 31710783
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Capuano R; Paba E; Mansi A; Marcelloni AM; Chiominto A; Proietto AR; Zampetti E; Macagnano A; Lvova L; Catini A; Paolesse R; Tranfo G; Di Natale C
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of plastic toys contaminated with volatile organic compounds using QCM gas sensor array.
    Oleneva E; Kuchmenko T; Drozdova E; Legin A; Kirsanov D
    Talanta; 2020 May; 211():120701. PubMed ID: 32070603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Method for Generation of a Fingerprint Using Electronic Nose on the Example of Rapeseed Spoilage.
    Rusinek R; Gancarz M; Krekora M; Nawrocka A
    J Food Sci; 2019 Jan; 84(1):51-58. PubMed ID: 30557906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cuprous Oxide Based Chemiresistive Electronic Nose for Discrimination of Volatile Organic Compounds.
    Liu B; Wu X; Kam KWL; Cheung WF; Zheng B
    ACS Sens; 2019 Nov; 4(11):3051-3055. PubMed ID: 31591885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An electronic nose based on 2D group VI transition metal dichalcogenides/organic compounds sensor array.
    Gaggiotti S; Scroccarello A; Della Pelle F; Ferraro G; Del Carlo M; Mascini M; Cichelli A; Compagnone D
    Biosens Bioelectron; 2022 Dec; 218():114749. PubMed ID: 36183581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Virtual Electronic Nose for the Efficient Classification and Quantification of Volatile Organic Compounds.
    Domènech-Gil G; Puglisi D
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lung Cancer Screening Based on Type-different Sensor Arrays.
    Li W; Liu H; Xie D; He Z; Pi X
    Sci Rep; 2017 May; 7(1):1969. PubMed ID: 28512336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Converting electronic nose into opto-electronic nose by mixing MoS
    Mostafapour S; Mohamadi Gharaghani F; Hemmateenejad B
    Anal Chim Acta; 2021 Jul; 1170():338654. PubMed ID: 34090585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Milk Source Identification and Milk Quality Estimation Using an Electronic Nose and Machine Learning Techniques.
    Mu F; Gu Y; Zhang J; Zhang L
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal oxide sensors for electronic noses and their application to food analysis.
    Berna A
    Sensors (Basel); 2010; 10(4):3882-910. PubMed ID: 22319332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Volatile Organic Compounds and Their Concentrations Using a Novel Method Analysis of MOS Sensors Signal.
    Gancarz M; Nawrocka A; Rusinek R
    J Food Sci; 2019 Aug; 84(8):2077-2085. PubMed ID: 31339559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel electronic nose as adaptable device to judge microbiological quality and safety in foodstuff.
    Sberveglieri V; Carmona EN; Comini E; Ponzoni A; Zappa D; Pirrotta O; Pulvirenti A
    Biomed Res Int; 2014; 2014():529519. PubMed ID: 24783210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prospects and Challenges of Volatile Organic Compound Sensors in Human Healthcare.
    Jalal AH; Alam F; Roychoudhury S; Umasankar Y; Pala N; Bhansali S
    ACS Sens; 2018 Jul; 3(7):1246-1263. PubMed ID: 29879839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diagnosing gastrointestinal illnesses using fecal headspace volatile organic compounds.
    Chan DK; Leggett CL; Wang KK
    World J Gastroenterol; 2016 Jan; 22(4):1639-49. PubMed ID: 26819529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.