These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38895093)

  • 1. A context-aware deconfounding autoencoder for robust prediction of personalized clinical drug response from cell-line compound screening.
    He D; Liu Q; Wu Y; Xie L
    Nat Mach Intell; 2022 Oct; 4(10):879-892. PubMed ID: 38895093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adversarial deconfounding autoencoder for learning robust gene expression embeddings.
    Dincer AB; Janizek JD; Lee SI
    Bioinformatics; 2020 Dec; 36(Suppl_2):i573-i582. PubMed ID: 33381842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning prediction of chemical-induced dose-dependent and context-specific multiplex phenotype responses and its application to personalized alzheimer's disease drug repurposing.
    Wu Y; Liu Q; Qiu Y; Xie L
    PLoS Comput Biol; 2022 Aug; 18(8):e1010367. PubMed ID: 35951653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auto-HMM-LMF: feature selection based method for prediction of drug response via autoencoder and hidden Markov model.
    Emdadi A; Eslahchi C
    BMC Bioinformatics; 2021 Jan; 22(1):33. PubMed ID: 33509079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-Scale Integrative Analysis of Soybean Transcriptome Using an Unsupervised Autoencoder Model.
    Su L; Xu C; Zeng S; Su L; Joshi T; Stacey G; Xu D
    Front Plant Sci; 2022; 13():831204. PubMed ID: 35310659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AE-LGBM: Sequence-based novel approach to detect interacting protein pairs via ensemble of autoencoder and LightGBM.
    Sharma A; Singh B
    Comput Biol Med; 2020 Oct; 125():103964. PubMed ID: 32911276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The prediction of drug sensitivity by multi-omics fusion reveals the heterogeneity of drug response in pan-cancer.
    Wang C; Zhang M; Zhao J; Li B; Xiao X; Zhang Y
    Comput Biol Med; 2023 Sep; 163():107220. PubMed ID: 37406589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RefDNN: a reference drug based neural network for more accurate prediction of anticancer drug resistance.
    Choi J; Park S; Ahn J
    Sci Rep; 2020 Feb; 10(1):1861. PubMed ID: 32024872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MMCL-CDR: enhancing cancer drug response prediction with multi-omics and morphology images contrastive representation learning.
    Li Y; Guo Z; Gao X; Wang G
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38070154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying Disease of Interest With Deep Learning Using Diagnosis Code.
    Cho YS; Kim E; Stafford PL; Oh MH; Kwon Y
    J Korean Med Sci; 2023 Mar; 38(11):e77. PubMed ID: 36942391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual adversarial deconfounding autoencoder for joint batch-effects removal from multi-center and multi-scanner radiomics data.
    Cavinato L; Massi MC; Sollini M; Kirienko M; Ieva F
    Sci Rep; 2023 Nov; 13(1):18857. PubMed ID: 37914758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. scMAE: a masked autoencoder for single-cell RNA-seq clustering.
    Fang Z; Zheng R; Li M
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38230824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmark of embedding-based methods for accurate and transferable prediction of drug response.
    Jia P; Hu R; Zhao Z
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 36961310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MGAE-DC: Predicting the synergistic effects of drug combinations through multi-channel graph autoencoders.
    Zhang P; Tu S
    PLoS Comput Biol; 2023 Mar; 19(3):e1010951. PubMed ID: 36867661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prognosis prediction of patients with malignant pleural mesothelioma using conditional variational autoencoder on 3D PET images and clinical data.
    Matsuo H; Kitajima K; Kono AK; Kuribayashi K; Kijima T; Hashimoto M; Hasegawa S; Yamakado K; Murakami T
    Med Phys; 2023 Dec; 50(12):7548-7557. PubMed ID: 37651615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Framework for personalized prediction of treatment response in relapsing remitting multiple sclerosis.
    Stühler E; Braune S; Lionetto F; Heer Y; Jules E; Westermann C; Bergmann A; van Hövell P;
    BMC Med Res Methodol; 2020 Feb; 20(1):24. PubMed ID: 32028898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deciphering tissue heterogeneity from spatially resolved transcriptomics by the autoencoder-assisted graph convolutional neural network.
    Li X; Huang W; Xu X; Zhang HY; Shi Q
    Front Genet; 2023; 14():1202409. PubMed ID: 37303949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomarker discovery in heterogeneous tissue samples -taking the in-silico deconfounding approach.
    Repsilber D; Kern S; Telaar A; Walzl G; Black GF; Selbig J; Parida SK; Kaufmann SH; Jacobsen M
    BMC Bioinformatics; 2010 Jan; 11():27. PubMed ID: 20070912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepREAL: a deep learning powered multi-scale modeling framework for predicting out-of-distribution ligand-induced GPCR activity.
    Cai T; Abbu KA; Liu Y; Xie L
    Bioinformatics; 2022 Apr; 38(9):2561-2570. PubMed ID: 35274689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.