These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38895477)

  • 1. Spiking networks that efficiently process dynamic sensory features explain receptor information mixing in somatosensory cortex.
    Koren V; Emanuel AJ; Panzeri S
    bioRxiv; 2024 Jun; ():. PubMed ID: 38895477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure, dynamics, coding and optimal biophysical parameters of efficient excitatory-inhibitory spiking networks.
    Koren V; Malerba SB; Schwalger T; Panzeri S
    bioRxiv; 2024 Apr; ():. PubMed ID: 38712237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recurrent Circuits Amplify Corticofugal Signals and Drive Feedforward Inhibition in the Inferior Colliculus.
    Oberle HM; Ford AN; Czarny JE; Rogalla MM; Apostolides PF
    J Neurosci; 2023 Aug; 43(31):5642-5655. PubMed ID: 37308295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constructing Precisely Computing Networks with Biophysical Spiking Neurons.
    Schwemmer MA; Fairhall AL; Denéve S; Shea-Brown ET
    J Neurosci; 2015 Jul; 35(28):10112-34. PubMed ID: 26180189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Millisecond precision temporal encoding of stimulus features during cortically generated gamma oscillations in the rat somatosensory cortex.
    Bessaih T; Higley MJ; Contreras D
    J Physiol; 2018 Feb; 596(3):515-534. PubMed ID: 29265375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A feedforward inhibitory circuit mediates lateral refinement of sensory representation in upper layer 2/3 of mouse primary auditory cortex.
    Li LY; Ji XY; Liang F; Li YT; Xiao Z; Tao HW; Zhang LI
    J Neurosci; 2014 Oct; 34(41):13670-83. PubMed ID: 25297094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Somatosensory response properties of excitatory and inhibitory neurons in rat motor cortex.
    Murray PD; Keller A
    J Neurophysiol; 2011 Sep; 106(3):1355-62. PubMed ID: 21653707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contextual Integration in Cortical and Convolutional Neural Networks.
    Iyer R; Hu B; Mihalas S
    Front Comput Neurosci; 2020; 14():31. PubMed ID: 32390818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feedforward Inhibition Allows Input Summation to Vary in Recurrent Cortical Networks.
    Histed MH
    eNeuro; 2018; 5(1):. PubMed ID: 29682603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Thalamocortical Synaptic Transmission and Dysregulation of the Excitatory-Inhibitory Balance at the Thalamocortical Feedforward Inhibitory Microcircuit in a Genetic Mouse Model of Migraine.
    Tottene A; Favero M; Pietrobon D
    J Neurosci; 2019 Dec; 39(49):9841-9851. PubMed ID: 31645463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Low-Pass Dendro-Somatic Coupling in the Apical Dendrite of Layer 5 Pyramidal Neurons in the Anterior Cingulate Cortex.
    Marti Mengual U; Wybo WAM; Spierenburg LJE; Santello M; Senn W; Nevian T
    J Neurosci; 2020 Nov; 40(46):8799-8815. PubMed ID: 33046549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extending the Functional Subnetwork Approach to a Generalized Linear Integrate-and-Fire Neuron Model.
    Szczecinski NS; Quinn RD; Hunt AJ
    Front Neurorobot; 2020; 14():577804. PubMed ID: 33281592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Networks with lateral connectivity. I. dynamic properties mediated by the balance of intrinsic excitation and inhibition.
    Xing J; Gerstein GL
    J Neurophysiol; 1996 Jan; 75(1):184-99. PubMed ID: 8822551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive coding with spiking neurons and feedforward gist signaling.
    Lee K; Dora S; Mejias JF; Bohte SM; Pennartz CMA
    Front Comput Neurosci; 2024; 18():1338280. PubMed ID: 38680678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct subtypes of inhibitory interneurons differentially promote the propagation of rate and temporal codes in the feedforward neural network.
    Gwak J; Kwag J
    Chaos; 2020 May; 30(5):053102. PubMed ID: 32491918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting operational regimes of interest in recurrent neural networks.
    Ekelmans P; Kraynyukova N; Tchumatchenko T
    PLoS Comput Biol; 2023 May; 19(5):e1011097. PubMed ID: 37186668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural coding: A single neuron's perspective.
    Azarfar A; Calcini N; Huang C; Zeldenrust F; Celikel T
    Neurosci Biobehav Rev; 2018 Nov; 94():238-247. PubMed ID: 30227142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implementing Signature Neural Networks with Spiking Neurons.
    Carrillo-Medina JL; Latorre R
    Front Comput Neurosci; 2016; 10():132. PubMed ID: 28066221
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.