These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38895520)

  • 1. Structural features of biobased composite foams revealed by X-ray tomography.
    Morankar S; Mort R; Curtzwiler G; Vorst K; Jiang S; Chawla N
    RSC Adv; 2024 Jun; 14(27):19528-19538. PubMed ID: 38895520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological Features of PUR-Wood Particle Composite Foams.
    Mirski R; Walkiewicz J; Dukarska D; Derkowski A
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-structure-property relationship of wood particles in aqueous and dry insulative foams.
    Dobrzanski E; Ferreira ES; Tiwary P; Agrawal P; Chen R; Cranston ED
    Carbohydr Polym; 2024 Jul; 335():122077. PubMed ID: 38616097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Insulative PEG-Grafted Cellulose Polyurethane Foams-From Synthesis to Application Properties.
    Grząbka-Zasadzińska A; Bartczak P; Borysiak S
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large Deformation Finite Element Analyses for 3D X-ray CT Scanned Microscopic Structures of Polyurethane Foams.
    Iizuka M; Goto R; Siegkas P; Simpson B; Mansfield N
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33671456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Microstructure Evolution and Mechanical Properties during Compression of Open-Cell Ni-Foams with Hollow Struts Using Micro-CT and FEM.
    Lee JH; Lee GY; Rha JJ; Kim JH; Cho JH
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influences of Increased Pressure Foaming on the Cellular Structure and Compressive Properties of In Situ Al-4.5%Cu-xTiB
    Niu Z; An Z; Jiang Z; Cao Z; Yu Y
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34067800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of Rigid Polyurethane Foams with the Addition of Nano-SiO
    Zhang Q; Lin X; Chen W; Zhang H; Han D
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31948014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyurethane/Vermiculite Foam Composite as Sustainable Material for Vertical Flame Retardant.
    Alves LRPST; Alves MDTC; Honorio LMC; Moraes AI; Silva-Filho EC; Peña-Garcia R; Furtini MB; da Silva DA; Osajima JA
    Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36145923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biobased Polyurethane Composite Foams Reinforced with Plum Stones and Silanized Plum Stones.
    Miedzińska K; Członka S; Strąkowska A; Strzelec K
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33946213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biobased foams for thermal insulation: material selection, processing, modelling, and performance.
    Mort R; Vorst K; Curtzwiler G; Jiang S
    RSC Adv; 2021 Jan; 11(8):4375-4394. PubMed ID: 35424381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The 3D structure of real polymer foams.
    Montminy MD; Tannenbaum AR; Macosko CW
    J Colloid Interface Sci; 2004 Dec; 280(1):202-11. PubMed ID: 15476791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilizing nanocellulose-nonionic surfactant composite foams by delayed Ca-induced gelation.
    Gordeyeva KS; Fall AB; Hall S; Wicklein B; Bergström L
    J Colloid Interface Sci; 2016 Jun; 472():44-51. PubMed ID: 27003498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of Carbon Foam from Waste Artificial Marble Powder and Carboxymethyl Cellulose via Electron Beam Irradiation and Its Characterization.
    Kim HG; Kim YS; Kwac LK; Chae SH; Shin HK
    Materials (Basel); 2018 Mar; 11(4):. PubMed ID: 29565300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructural Parameters for Modelling of Superconducting Foams.
    Koblischka MR; Koblischka-Veneva A; Nouailhetas Q; Hajiri G; Berger K; Douine B; Gokhfeld D
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphometric Analysis of One-Component Polyurethane Foams Applicable in the Building Sector via X-ray Computed Microtomography.
    Blazejczyk A
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30217098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the Insulating Capacity of Polyurethane Foams through Polyurethane Aerogel Inclusion: From Insulation to Superinsulation.
    Merillas B; Villafañe F; Rodríguez-Pérez MÁ
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35808067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro evaluation of novel bioactive composites based on Bioglass-filled polylactide foams for bone tissue engineering scaffolds.
    Blaker JJ; Gough JE; Maquet V; Notingher I; Boccaccini AR
    J Biomed Mater Res A; 2003 Dec; 67(4):1401-11. PubMed ID: 14624528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One More Step towards a Circular Economy for Thermal Insulation Materials-Development of Composites Highly Filled with Waste Polyurethane (PU) Foam for Potential Use in the Building Industry.
    Kowalczyk Ł; Korol J; Chmielnicki B; Laska A; Chuchala D; Hejna A
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation, characterization, and in vitro degradation of bioresorbable and bioactive composites based on Bioglass-filled polylactide foams.
    Maquet V; Boccaccini AR; Pravata L; Notingher I; Jérôme R
    J Biomed Mater Res A; 2003 Aug; 66(2):335-46. PubMed ID: 12889004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.