These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38895522)

  • 1. A review on recent advances of cellulose acetate membranes for gas separation.
    Bashir Z; Lock SSM; Hira NE; Ilyas SU; Lim LG; Lock ISM; Yiin CL; Darban MA
    RSC Adv; 2024 Jun; 14(27):19560-19580. PubMed ID: 38895522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced gas separation performance for H
    Yousef S; Tonkonogovas A; Makarevicius V; Mohamed A
    Chemosphere; 2024 Jun; 358():142166. PubMed ID: 38685331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulose acetate-based membranes by interfacial engineering and integration of ZIF-62 glass nanoparticles for CO
    Mubashir M; Dumée LF; Fong YY; Jusoh N; Lukose J; Chai WS; Show PL
    J Hazard Mater; 2021 Aug; 415():125639. PubMed ID: 33740720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CO
    Taheri P; Raisi A; Maleh MS
    Environ Sci Pollut Res Int; 2021 Jul; 28(28):38274-38291. PubMed ID: 33733421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(ionic liquid)/Ionic Liquid Ion-Gels with High "Free" Ionic Liquid Content: Platform Membrane Materials for CO2/Light Gas Separations.
    Cowan MG; Gin DL; Noble RD
    Acc Chem Res; 2016 Apr; 49(4):724-32. PubMed ID: 27046045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric membranes for gas separation: interfacial insights and manufacturing.
    Alkandari SH; Lightfoot J; Castro-Dominguez B
    RSC Adv; 2023 May; 13(21):14198-14209. PubMed ID: 37180016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Cellulose Triacetate (CTA)/Cellulose Diacetate (CDA) Blend Membranes Enhanced by Amine Functionalized ZIF-8 for CO
    Raza A; Japip S; Liang CZ; Farrukh S; Hussain A; Chung TS
    Polymers (Basel); 2021 Aug; 13(17):. PubMed ID: 34502985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Simulations of MOF Membranes and Performance Predictions of MOF/Polymer Mixed Matrix Membranes for CO
    Altintas C; Keskin S
    ACS Sustain Chem Eng; 2019 Jan; 7(2):2739-2750. PubMed ID: 30701144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon capture from natural gas using multi-walled CNTs based mixed matrix membranes.
    Hussain A; Farrukh S; Hussain A; Ayoub M
    Environ Technol; 2019 Mar; 40(7):843-854. PubMed ID: 29161995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of cellulose-based derivatives polymers in fabrication of gas separation membranes: Recent developments and challenges.
    Yavuzturk Gul B; Pekgenc E; Vatanpour V; Koyuncu I
    Carbohydr Polym; 2023 Dec; 321():121296. PubMed ID: 37739529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing Mixed Matrix Membranes with Good CO
    Adot Veetil K; Husna A; Kabir MH; Jeong I; Choi O; Hossain I; Kim TH
    Polymers (Basel); 2023 Nov; 15(22):. PubMed ID: 38006167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulose acetate based sustainable nanostructured membranes for environmental remediation.
    Rehman A; Jahan Z; Sher F; Noor T; Khan Niazi MB; Akram MA; Sher EK
    Chemosphere; 2022 Nov; 307(Pt 1):135736. PubMed ID: 35850224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of cellulose acetate and ZIF-8 mixed matrix membrane for CO
    Tanvidkar P; Jonnalagedda A; Kuncharam BVR
    Environ Technol; 2024 Jun; 45(14):2867-2878. PubMed ID: 36920270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CO2 adsorption using TiO2 composite polymeric membranes: A kinetic study.
    Hafeez S; Fan X; Hussain A; Martín CF
    J Environ Sci (China); 2015 Sep; 35():163-171. PubMed ID: 26354705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulose acetate in fabrication of polymeric membranes: A review.
    Vatanpour V; Pasaoglu ME; Barzegar H; Teber OO; Kaya R; Bastug M; Khataee A; Koyuncu I
    Chemosphere; 2022 May; 295():133914. PubMed ID: 35149008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement in the selectivity of O
    Azam SU; Hussain A; Farrukh S; Noor T; Liu Y
    Environ Sci Pollut Res Int; 2020 Jul; 27(19):24413-24429. PubMed ID: 32306250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cationic Imidazolium-Urethane-Based Poly(Ionic Liquids) Membranes for Enhanced CO
    Dias G; Rocca L; Ferrari HZ; Bernard FL; Brandão FG; Pereira L; Einloft S
    Membranes (Basel); 2024 Jul; 14(7):. PubMed ID: 39057659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CO
    Esser T; Wolf T; Schubert T; Benra J; Forero S; Maistros G; Barbe S; Theodorakopoulos GV; Karousos DS; Sapalidis AA; Favvas EP
    Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33499034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in the fabrication of organic solvent nanofiltration membranes using covalent/metal organic frameworks.
    Azadi E; Singh N; Dinari M; Kim JS
    Chem Commun (Camb); 2024 Mar; 60(21):2865-2886. PubMed ID: 38372347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Key Applications and Potential Limitations of Ionic Liquid Membranes in the Gas Separation Process of CO
    Elhenawy S; Khraisheh M; AlMomani F; Hassan M
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32961921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.