These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 3889566)

  • 21. The effect of arterial filtration on reduction of gaseous microemboli in the middle cerebral artery during cardiopulmonary bypass.
    Padayachee TS; Parsons S; Theobold R; Gosling RG; Deverall PB
    Ann Thorac Surg; 1988 Jun; 45(6):647-9. PubMed ID: 3288143
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Runaway pump head: new cause of gas embolism during cardiopulmonary bypass.
    Kurusz M; Shaffer CW; Christman EW; Tyers GF
    J Thorac Cardiovasc Surg; 1979 May; 77(5):792-5. PubMed ID: 431117
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrasound detection of micro-emboli in the middle cerebral artery during cardiopulmonary bypass surgery.
    Deverall PB; Padayachee TS; Parsons S; Theobold R; Battistessa SA
    Eur J Cardiothorac Surg; 1988; 2(4):256-60. PubMed ID: 3078422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of Oxygenator Size on Air Removal Characteristics: A Clinical Evaluation.
    Stehouwer MC; de Vroege R; Kelder JC; Hofman FN; de Mol BA; Bruins P
    ASAIO J; 2016; 62(4):421-6. PubMed ID: 26919180
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of the dynamic air bubble trap on cerebral microemboli and S100 beta.
    Motallebzadeh R; Jahangiri M
    J Thorac Cardiovasc Surg; 2004 Jul; 128(1):154. PubMed ID: 15224035
    [No Abstract]   [Full Text] [Related]  

  • 26. Resonance ultrasonic measurements of microscopic gas bubbles.
    Horton JW; Wells CH
    Aviat Space Environ Med; 1976 Jul; 47(7):777-81. PubMed ID: 971166
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An In-Vitro Study Comparing the GME Handling of Two Contemporary Oxygenators.
    Gisnarian CJ; Hedman A; Shann KG
    J Extra Corpor Technol; 2017 Dec; 49(4):262-272. PubMed ID: 29302117
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Retained intracardiac air. Transesophageal echocardiography for definition of incidence and monitoring removal by improved techniques.
    Oka Y; Inoue T; Hong Y; Sisto DA; Strom JA; Frater RW
    J Thorac Cardiovasc Surg; 1986 Mar; 91(3):329-38. PubMed ID: 3951240
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extracorporeal bubbles: a word of caution.
    De Somer FM; Vetrano MR; Van Beeck JP; Van Nooten GJ
    Interact Cardiovasc Thorac Surg; 2010 Jun; 10(6):995-1001. PubMed ID: 20197351
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How effective are cardiopulmonary bypass circuits at removing gaseous microemboli?
    Jones TJ; Deal DD; Vernon JC; Blackburn N; Stump DA
    J Extra Corpor Technol; 2002 Mar; 34(1):34-9. PubMed ID: 11911627
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamics of appearance and decay of gaseous microemboli during in vitro extracorporeal circulation.
    Harea GT; Karaliou V; Roberts TR; Choi JH; Beely BM; Cancio LC; Batchinsky AI
    Perfusion; 2022 Apr; 37(3):242-248. PubMed ID: 33567967
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Delivery of gaseous microemboli with vacuum-assisted venous drainage during pulsatile and nonpulsatile perfusion in a simulated neonatal cardiopulmonary bypass model.
    Wang S; Baer L; Kunselman AR; Myers JL; Undar A
    ASAIO J; 2008; 54(4):416-22. PubMed ID: 18645361
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An in vitro method to quantitate gaseous microemboli production of bubble oxygenators. 1982.
    Sakauye LM; Servas FM; O'Connor KB; Cottonaro C
    J Extra Corpor Technol; 2011 Sep; 43(3):172-9. PubMed ID: 22165167
    [No Abstract]   [Full Text] [Related]  

  • 34. Preventing gaseous microemboli during blood sampling and drug administration: an in vitro investigation.
    Myers GJ
    J Extra Corpor Technol; 2007 Sep; 39(3):192-8. PubMed ID: 17972455
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Prevention of gas microemboli during cardiac surgery. Numerical control of cardiac cavity purging by an ultrasonic detector].
    Mikaeloff P; Van Haecke P; Girard C; Tartulier M; Devolfe C; Guillaud C; Lakestani F; Roche M; Guillerm R; Masurel G
    Arch Mal Coeur Vaiss; 1984 Mar; 77(3):314-23. PubMed ID: 6424617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clinical comparison of two devices for detection of microemboli during cardiopulmonary bypass.
    Clayton RH; Pearson DT; Murray A
    Clin Phys Physiol Meas; 1990 Nov; 11(4):327-32. PubMed ID: 2279375
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bubble tracking through computational fluid dynamics in arterial line filters for cardiopulmonary bypass.
    Fiore GB; Morbiducci U; Ponzini R; Redaelli A
    ASAIO J; 2009; 55(5):438-44. PubMed ID: 19730002
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of two different blood pumps on delivery of gaseous microemboli during pulsatile and nonpulsatile perfusion in a simulated infant CPB model.
    Wang S; Kunselman AR; Myers JL; Undar A
    ASAIO J; 2008; 54(5):538-41. PubMed ID: 18812749
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Air filtering capacity of an integrated cardiopulmonary bypass unit.
    Mueller XM; Tevaearai HT; Jegger D; von Segesser LK
    ASAIO J; 2003; 49(4):365-9. PubMed ID: 12918575
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Retrospective Analysis of Air Handling by Contemporary Oxygenators in the Setting of Cardiac Surgery.
    Benstoem C; Bleilevens C; Borchard R; Stoppe C; Goetzenich A; Autschbach R; Breuer T
    Ann Thorac Cardiovasc Surg; 2018 Oct; 24(5):230-237. PubMed ID: 29998925
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.