These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38895922)

  • 1. Advances in Piezoelectret Materials-Based Bidirectional Haptic Communication Devices.
    Gong Y; Zhang K; Lei IM; Wang Y; Zhong J
    Adv Mater; 2024 Aug; 36(33):e2405308. PubMed ID: 38895922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Flexible Piezoelectret Actuator/Sensor Patch for Mechanical Human-Machine Interfaces.
    Zhong J; Ma Y; Song Y; Zhong Q; Chu Y; Karakurt I; Bogy DB; Lin L
    ACS Nano; 2019 Jun; 13(6):7107-7116. PubMed ID: 31184134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible THV/COC Piezoelectret Nanogenerator for Wide-Range Pressure Sensing.
    Li W; Duan J; Zhong J; Wu N; Lin S; Xu Z; Chen S; Pan Y; Huang L; Hu B; Zhou J
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29675-29683. PubMed ID: 30106276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices.
    Zhou H; Zhang Y; Qiu Y; Wu H; Qin W; Liao Y; Yu Q; Cheng H
    Biosens Bioelectron; 2020 Nov; 168():112569. PubMed ID: 32905930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, Fabrication, Structure Optimization and Pressure Sensing Demonstration of COC Piezoelectret Sensor and Sensor Array.
    Wang H; Wang X; Wadsworth M; Ahmed MF; Liu Z; Zeng C
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 35893175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composites, Fabrication and Application of Polyvinylidene Fluoride for Flexible Electromechanical Devices: A Review.
    Guo S; Duan X; Xie M; Aw KC; Xue Q
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33287450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging MXene-Based Flexible Tactile Sensors for Health Monitoring and Haptic Perception.
    Lai QT; Zhao XH; Sun QJ; Tang Z; Tang XG; Roy VAL
    Small; 2023 Jul; 19(27):e2300283. PubMed ID: 36965088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon-Based Flexible Devices for Comprehensive Health Monitoring.
    Wang H; Li S; Lu H; Zhu M; Liang H; Wu X; Zhang Y
    Small Methods; 2023 Feb; 7(2):e2201340. PubMed ID: 36617527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Latest Advances in Flexible Symmetric Supercapacitors: From Material Engineering to Wearable Applications.
    Lu C; Chen X
    Acc Chem Res; 2020 Aug; 53(8):1468-1477. PubMed ID: 32658447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustainable Natural Bio-Origin Materials for Future Flexible Devices.
    Lan L; Ping J; Xiong J; Ying Y
    Adv Sci (Weinh); 2022 May; 9(15):e2200560. PubMed ID: 35322600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green Flexible Electronics: Natural Materials, Fabrication, and Applications.
    Hui Z; Zhang L; Ren G; Sun G; Yu HD; Huang W
    Adv Mater; 2023 Jul; 35(28):e2211202. PubMed ID: 36763956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Printing Multi-Material Organic Haptic Actuators.
    Zhai Y; Wang Z; Kwon KS; Cai S; Lipomi DJ; Ng TN
    Adv Mater; 2021 May; 33(19):e2002541. PubMed ID: 33135205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Haptic Sensing and Feedback Techniques toward Virtual Reality.
    Shi Y; Shen G
    Research (Wash D C); 2024; 7():0333. PubMed ID: 38533183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Wearable Haptic Systems for the Fingers in Augmented Reality Applications.
    Maisto M; Pacchierotti C; Chinello F; Salvietti G; De Luca A; Prattichizzo D
    IEEE Trans Haptics; 2017; 10(4):511-522. PubMed ID: 28391207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Wearable Textile-Embedded Dielectric Elastomer Actuator Haptic Display.
    Lee DY; Jeong SH; Cohen AJ; Vogt DM; Kollosche M; Lansberry G; Mengüç Y; Israr A; Clarke DR; Wood RJ
    Soft Robot; 2022 Dec; 9(6):1186-1197. PubMed ID: 35856695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in Flexible Magnetosensitive Materials and Devices for Wearable Electronics.
    Yang H; Li S; Wu Y; Bao X; Xiang Z; Xie Y; Pan L; Chen J; Liu Y; Li RW
    Adv Mater; 2024 Sep; 36(37):e2311996. PubMed ID: 38776537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Piezoelectric Energy Harvester Technologies: Synthesis, Mechanisms, and Multifunctional Applications.
    He Q; Briscoe J
    ACS Appl Mater Interfaces; 2024 Jun; 16(23):29491-29520. PubMed ID: 38739105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced Carbon for Flexible and Wearable Electronics.
    Wang C; Xia K; Wang H; Liang X; Yin Z; Zhang Y
    Adv Mater; 2019 Mar; 31(9):e1801072. PubMed ID: 30300444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Overview of Wearable Haptic Technologies and Their Performance in Virtual Object Exploration.
    van Wegen M; Herder JL; Adelsberger R; Pastore-Wapp M; van Wegen EEH; Bohlhalter S; Nef T; Krack P; Vanbellingen T
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Materials, Electrical Performance, Mechanisms, Applications, and Manufacturing Approaches for Flexible Strain Sensors.
    Han F; Li M; Ye H; Zhang G
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34063165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.