BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38896410)

  • 1. A machine learning-based approach for improving plasmid DNA production in Escherichia coli fed-batch fermentations.
    Xu Z; Zhu X; Mohsin A; Guo J; Zhuang Y; Chu J; Guo M; Wang G
    Biotechnol J; 2024 Jun; 19(6):e2400140. PubMed ID: 38896410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmid DNA production with Escherichia coli GALG20, a pgi-gene knockout strain: fermentation strategies and impact on downstream processing.
    Gonçalves GA; Prather KL; Monteiro GA; Carnes AE; Prazeres DM
    J Biotechnol; 2014 Sep; 186():119-27. PubMed ID: 24995846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated fed-batch fermentation with feed-back controls based on dissolved oxygen (DO) and pH for production of DNA vaccines.
    Chen W; Graham C; Ciccarelli RB
    J Ind Microbiol Biotechnol; 1997 Jan; 18(1):43-8. PubMed ID: 9079287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing host cell physiology and stress avoidance for the production of recombinant human tumour necrosis factor α in Escherichia coli.
    Selas Castiñeiras T; Williams SG; Hitchcock A; Cole JA; Smith DC; Overton TW
    Microbiology (Reading); 2018 Apr; 164(4):440-452. PubMed ID: 29458685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature gradient-based high-cell density fed-batch fermentation for the production of pyruvate oxidase by recombinant E. coli.
    Liang J; Zhao J; Wang Z; Wang Y
    Prep Biochem Biotechnol; 2018 Feb; 48(2):188-193. PubMed ID: 29355461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmid DNA fermentation strategies: influence on plasmid stability and cell physiology.
    Silva F; Queiroz JA; Domingues FC
    Appl Microbiol Biotechnol; 2012 Mar; 93(6):2571-80. PubMed ID: 22089386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic modeling of plasmid bioproduction in Escherichia coli DH5α cultures over different carbon-source compositions.
    Lopes MB; Martins G; Calado CR
    J Biotechnol; 2014 Sep; 186():38-48. PubMed ID: 24998768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inducible Escherichia coli fermentation for increased plasmid DNA production.
    Carnes AE; Hodgson CP; Williams JA
    Biotechnol Appl Biochem; 2006 Nov; 45(Pt 3):155-66. PubMed ID: 16819941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scale-up bioprocess development for production of the antibiotic valinomycin in Escherichia coli based on consistent fed-batch cultivations.
    Li J; Jaitzig J; Lu P; Süssmuth RD; Neubauer P
    Microb Cell Fact; 2015 Jun; 14():83. PubMed ID: 26063334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generic estimator of biomass concentration for Escherichia coli and Saccharomyces cerevisiae fed-batch cultures based on cumulative oxygen consumption rate.
    Urniezius R; Survyla A; Paulauskas D; Bumelis VA; Galvanauskas V
    Microb Cell Fact; 2019 Nov; 18(1):190. PubMed ID: 31690339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of fermentation strategy on the characteristics of plasmid DNA production.
    O'Kennedy RD; Ward JM; Keshavarz-Moore E
    Biotechnol Appl Biochem; 2003 Feb; 37(Pt 1):83-90. PubMed ID: 12578555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput analysis of the plasmid bioproduction process in Escherichia coli by FTIR spectroscopy.
    Scholz T; Lopes VV; Calado CR
    Biotechnol Bioeng; 2012 Sep; 109(9):2279-85. PubMed ID: 22495516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning applied for metabolic flux-based control of micro-aerated fermentations in bioreactors.
    Mesquita TJB; Campani G; Giordano RC; Zangirolami TC; Horta ACL
    Biotechnol Bioeng; 2021 May; 118(5):2076-2091. PubMed ID: 33615444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient strategies to enhance plasmid stability for fermentation of recombinant Escherichia coli harboring tyrosine phenol lyase.
    Tang XL; Hu WY; Wang ZC; Zheng RC; Zheng YG
    Biotechnol Lett; 2021 Jul; 43(7):1265-1276. PubMed ID: 33830386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amplification of pBR322 plasmid DNA in Escherichia coli relA strains during batch and fed-batch fermentation.
    Hofmann KH; Neubauer P; Riethdorf S; Hecker M
    J Basic Microbiol; 1990; 30(1):37-41. PubMed ID: 2187073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High yield production of the latex clearing protein from Gordonia polyisoprenivorans VH2 in fed batch fermentations using a recombinant strain of Escherichia coli.
    Altenhoff AL; Thierbach S; Steinbüchel A
    J Biotechnol; 2020 Feb; 309():92-99. PubMed ID: 31881242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Escherichia coli to increase plasmid DNA production in high cell-density cultivations in batch mode.
    Borja GM; Meza Mora E; Barrón B; Gosset G; Ramírez OT; Lara AR
    Microb Cell Fact; 2012 Sep; 11():132. PubMed ID: 22992433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The potential of random forest and neural networks for biomass and recombinant protein modeling in Escherichia coli fed-batch fermentations.
    Melcher M; Scharl T; Spangl B; Luchner M; Cserjan M; Bayer K; Leisch F; Striedner G
    Biotechnol J; 2015 Sep; 10(11):1770-82. PubMed ID: 26121295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a fed-batch fermentation process to overproduce phosphoenolpyruvate carboxykinase using an expression vector with promoter and plasmid copy number controllable by heat.
    Chao YP; Chern JT; Lin WS; Wang ZW
    Biotechnol Bioeng; 2003 Nov; 84(4):459-66. PubMed ID: 14574704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of amino acids in the amplification and quality of DNA vectors for industrial applications.
    Dorward A; O'Kennedy RD; Folarin O; Ward JM; Keshavarz-Moore E
    Biotechnol Prog; 2019 Nov; 35(6):e2883. PubMed ID: 31298810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.