These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38896605)

  • 1. Inhibiting AGTR1 reduces AML burden and protects the heart from cardiotoxicity in mouse models.
    Pan Y; Wang C; Zhou W; Shi Y; Meng X; Muhammad Y; Hammer RD; Jia B; Zheng H; Li DP; Liu Z; Hildebrandt G; Kang X
    Sci Transl Med; 2024 Jun; 16(752):eadl5931. PubMed ID: 38896605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New insights into Notch1 regulation of the PI3K-AKT-mTOR1 signaling axis: targeted therapy of γ-secretase inhibitor resistant T-cell acute lymphoblastic leukemia.
    Hales EC; Taub JW; Matherly LH
    Cell Signal; 2014 Jan; 26(1):149-61. PubMed ID: 24140475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paeonol Reverses Adriamycin Induced Cardiac Pathological Remodeling through Notch1 Signaling Reactivation in H9c2 Cells and Adult Zebrafish Heart.
    Thabassum Akhtar Iqbal S; Tirupathi Pichiah PB; Raja S; Arunachalam S
    Chem Res Toxicol; 2020 Feb; 33(2):312-323. PubMed ID: 31307187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gamma-secretase inhibitors suppress the growth of leukemia and lymphoma cells.
    Kogoshi H; Sato T; Koyama T; Nara N; Tohda S
    Oncol Rep; 2007 Jul; 18(1):77-80. PubMed ID: 17549349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gamma-secretase complex-dependent intramembrane proteolysis of CD147 regulates the Notch1 signaling pathway in hepatocellular carcinoma.
    Yong YL; Zhang RY; Liu ZK; Wei D; Shang YK; Wu J; Zhang ZY; Li C; Chen ZN; Bian H
    J Pathol; 2019 Oct; 249(2):255-267. PubMed ID: 31215640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rescue of cardiac dysfunction during chemotherapy in acute myeloid leukaemia by blocking IL-1α.
    Zhou X; Liu Y; Shen Y; Chen L; Hu W; Yan Y; Feng B; Xiang L; Zhu Y; Jiang C; Dai Z; Huang X; Wu L; Liu T; Fu L; Duan C; Shen S; Li J; Zhang H
    Eur Heart J; 2024 Jul; 45(25):2235-2250. PubMed ID: 38607560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diverging effects of enalapril or eplerenone in primary prevention against doxorubicin-induced cardiotoxicity.
    Hullin R; Métrich M; Sarre A; Basquin D; Maillard M; Regamey J; Martin D
    Cardiovasc Res; 2018 Feb; 114(2):272-281. PubMed ID: 29016737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Functional analysis of notch in the pathophysiology of leukemia].
    Tohda S
    Rinsho Byori; 2009 Apr; 57(4):351-6. PubMed ID: 19489437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient potential receptor melastatin-2 (Trpm2) does not influence murine MLL-AF9-driven AML leukemogenesis or in vitro response to chemotherapy.
    Haladyna JN; Pastuer T; Riedel SS; Perraud AL; Bernt KM
    Exp Hematol; 2016 Jul; 44(7):596-602.e3. PubMed ID: 27033163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hes1 suppresses acute myeloid leukemia development through FLT3 repression.
    Kato T; Sakata-Yanagimoto M; Nishikii H; Ueno M; Miyake Y; Yokoyama Y; Asabe Y; Kamada Y; Muto H; Obara N; Suzukawa K; Hasegawa Y; Kitabayashi I; Uchida K; Hirao A; Yagita H; Kageyama R; Chiba S
    Leukemia; 2015 Mar; 29(3):576-85. PubMed ID: 25234168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The angiotensin II receptor 2 is expressed and mediates angiotensin II signaling in lung fibrosis.
    Königshoff M; Wilhelm A; Jahn A; Sedding D; Amarie OV; Eul B; Seeger W; Fink L; Günther A; Eickelberg O; Rose F
    Am J Respir Cell Mol Biol; 2007 Dec; 37(6):640-50. PubMed ID: 17630322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of a yeast-based signaling biosensor for human angiotensin II type 1 receptor via functional coupling between Asn295-mutated receptor and Gpa1/Gi3 chimeric Gα.
    Nakamura Y; Ishii J; Kondo A
    Biotechnol Bioeng; 2014 Nov; 111(11):2220-8. PubMed ID: 24890663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SUV39H1 regulates the progression of MLL-AF9-induced acute myeloid leukemia.
    Chu Y; Chen Y; Guo H; Li M; Wang B; Shi D; Cheng X; Guan J; Wang X; Xue C; Cheng T; Shi J; Yuan W
    Oncogene; 2020 Dec; 39(50):7239-7252. PubMed ID: 33037410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Notch1 contributes to mouse T-cell leukemia by directly inducing the expression of c-myc.
    Sharma VM; Calvo JA; Draheim KM; Cunningham LA; Hermance N; Beverly L; Krishnamoorthy V; Bhasin M; Capobianco AJ; Kelliher MA
    Mol Cell Biol; 2006 Nov; 26(21):8022-31. PubMed ID: 16954387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angiotensin II receptor 1 controls profibrotic Wnt/β-catenin signalling in experimental autoimmune myocarditis.
    Czepiel M; Diviani D; Jaźwa-Kusior A; Tkacz K; Rolski F; Smolenski RT; Siedlar M; Eriksson U; Kania G; Błyszczuk P
    Cardiovasc Res; 2022 Jan; 118(2):573-584. PubMed ID: 33576779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Down-regulation of Notch-1 expression decreases PU.1-mediated myeloid differentiation signaling in acute myeloid leukemia.
    Chen PM; Yen CC; Wang WS; Lin YJ; Chu CJ; Chiou TJ; Liu JH; Yang MH
    Int J Oncol; 2008 Jun; 32(6):1335-41. PubMed ID: 18497996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defining the in vivo characteristics of acute myeloid leukemia cells behavior by intravital imaging.
    Duarte D; Amarteifio S; Ang H; Kong IY; Ruivo N; Pruessner G; Hawkins ED; Lo Celso C
    Immunol Cell Biol; 2019 Feb; 97(2):229-235. PubMed ID: 30422351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atg5-dependent autophagy contributes to the development of acute myeloid leukemia in an MLL-AF9-driven mouse model.
    Liu Q; Chen L; Atkinson JM; Claxton DF; Wang HG
    Cell Death Dis; 2016 Sep; 7(9):e2361. PubMed ID: 27607576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNA-143 acts as a tumor suppressor through Musashi-2/DLL1/Notch1 and Musashi-2/Snail1/MMPs axes in acute myeloid leukemia.
    Li F; Han Y; Chen R; Jiang Y; Chen C; Wang X; Zhou J; Xu Q; Jiang S; Zhang S; Yu K; Zhang S
    J Transl Med; 2023 May; 21(1):309. PubMed ID: 37149661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-Transcriptional Control of Angiotensin II Type 1 Receptor Regulates Osteosarcoma Cell Death.
    Zhao Y; Xu K; Liu P
    Cell Physiol Biochem; 2018; 45(4):1581-1589. PubMed ID: 29482191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.