These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38896613)

  • 1. The specificity of intermodular recognition in a prototypical nonribosomal peptide synthetase depends on an adaptor domain.
    Karanth MN; Kirkpatrick JP; Krausze J; Schmelz S; Scrima A; Carlomagno T
    Sci Adv; 2024 Jun; 10(25):eadm9404. PubMed ID: 38896613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Advances in the study of the mechanism and application of nonribosomal peptide synthetases].
    Wang SY
    Wei Sheng Wu Xue Bao; 2007 Aug; 47(4):734-7. PubMed ID: 17944384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Structural Data Reveal the Motion of Carrier Proteins in Nonribosomal Peptide Synthesis.
    Kittilä T; Mollo A; Charkoudian LK; Cryle MJ
    Angew Chem Int Ed Engl; 2016 Aug; 55(34):9834-40. PubMed ID: 27435901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular impact of covalent modifications on nonribosomal peptide synthetase carrier protein communication.
    Goodrich AC; Meyers DJ; Frueh DP
    J Biol Chem; 2017 Jun; 292(24):10002-10013. PubMed ID: 28455448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploitation of the selectivity-conferring code of nonribosomal peptide synthetases for the rational design of novel peptide antibiotics.
    Eppelmann K; Stachelhaus T; Marahiel MA
    Biochemistry; 2002 Jul; 41(30):9718-26. PubMed ID: 12135394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural characterization of a PCP-R didomain from an archaeal nonribosomal peptide synthetase reveals novel interdomain interactions.
    Deshpande S; Altermann E; Sarojini V; Lott JS; Lee TV
    J Biol Chem; 2021; 296():100432. PubMed ID: 33610550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput reprogramming of an NRPS condensation domain.
    Folger IB; Frota NF; Pistofidis A; Niquille DL; Hansen DA; Schmeing TM; Hilvert D
    Nat Chem Biol; 2024 Jun; 20(6):761-769. PubMed ID: 38308044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of epimerization domains on the intermodular transfer of enzyme-bound intermediates in nonribosomal peptide synthesis.
    Stein DB; Linne U; Hahn M; Marahiel MA
    Chembiochem; 2006 Nov; 7(11):1807-14. PubMed ID: 16952189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing Exchange Units for Combining Iterative and Linear Fungal Nonribosomal Peptide Synthetases.
    Steiniger C; Hoffmann S; Süssmuth RD
    Cell Chem Biol; 2019 Nov; 26(11):1526-1534.e2. PubMed ID: 31471217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Switch for the transfer of substrate between nonribosomal peptide and polyketide modules of the rifamycin synthetase assembly line.
    Admiraal SJ; Khosla C; Walsh CT
    J Am Chem Soc; 2003 Nov; 125(45):13664-5. PubMed ID: 14599196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase.
    Reimer JM; Aloise MN; Harrison PM; Schmeing TM
    Nature; 2016 Jan; 529(7585):239-42. PubMed ID: 26762462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures of a dimodular nonribosomal peptide synthetase reveal conformational flexibility.
    Reimer JM; Eivaskhani M; Harb I; Guarné A; Weigt M; Schmeing TM
    Science; 2019 Nov; 366(6466):. PubMed ID: 31699907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BlmIII and BlmIV nonribosomal peptide synthetase-catalyzed biosynthesis of the bleomycin bithiazole moiety involving both in cis and in trans aminoacylation.
    Du L; Chen M; Zhang Y; Shen B
    Biochemistry; 2003 Aug; 42(32):9731-40. PubMed ID: 12911315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modular catalytic activity of nonribosomal peptide synthetases depends on the dynamic interaction between adenylation and condensation domains.
    Peng YJ; Chen Y; Zhou CZ; Miao W; Jiang YL; Zeng X; Zhang CC
    Structure; 2024 Apr; 32(4):440-452.e4. PubMed ID: 38340732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtH-like Proteins Support a Highly Dynamic Domain Architecture.
    Miller BR; Drake EJ; Shi C; Aldrich CC; Gulick AM
    J Biol Chem; 2016 Oct; 291(43):22559-22571. PubMed ID: 27597544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution Structure of a Nonribosomal Peptide Synthetase Carrier Protein Loaded with Its Substrate Reveals Transient, Well-Defined Contacts.
    Goodrich AC; Harden BJ; Frueh DP
    J Am Chem Soc; 2015 Sep; 137(37):12100-9. PubMed ID: 26334259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-Ray Crystallography and Electron Microscopy of Cross- and Multi-Module Nonribosomal Peptide Synthetase Proteins Reveal a Flexible Architecture.
    Tarry MJ; Haque AS; Bui KH; Schmeing TM
    Structure; 2017 May; 25(5):783-793.e4. PubMed ID: 28434915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Total Biosynthesis of the Pyrrolo[4,2]benzodiazepine Scaffold Tomaymycin on an In Vitro Reconstituted NRPS System.
    von Tesmar A; Hoffmann M; Pippel J; Fayad AA; Dausend-Werner S; Bauer A; Blankenfeldt W; Müller R
    Cell Chem Biol; 2017 Oct; 24(10):1216-1227.e8. PubMed ID: 28890318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A nuclear magnetic resonance method for probing molecular influences of substrate loading in nonribosomal peptide synthetase carrier proteins.
    Goodrich AC; Frueh DP
    Biochemistry; 2015 Feb; 54(5):1154-6. PubMed ID: 25620398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dipeptide formation on engineered hybrid peptide synthetases.
    Doekel S; Marahiel MA
    Chem Biol; 2000 Jun; 7(6):373-84. PubMed ID: 10873839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.