These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 38896796)
21. Molecular origin of the self-assembly of lanreotide into nanotubes: a mutational approach. Valéry C; Pouget E; Pandit A; Verbavatz JM; Bordes L; Boisdé I; Cherif-Cheikh R; Artzner F; Paternostre M Biophys J; 2008 Mar; 94(5):1782-95. PubMed ID: 17993497 [TBL] [Abstract][Full Text] [Related]
22. Efficient Intracellular Delivery of Cell-Impermeable Cargo Molecules by Peptides Containing Tryptophan and Histidine. Shirazi AN; Mozaffari S; Sherpa RT; Tiwari R; Parang K Molecules; 2018 Jun; 23(7):. PubMed ID: 29949881 [TBL] [Abstract][Full Text] [Related]
23. Bioactive unnatural somatostatin analogues through bioorthogonal iodo- and ethynyl-disulfide intercalators. Pfisterer A; Eisele K; Chen X; Wagner M; Müllen K; Weil T Chemistry; 2011 Aug; 17(35):9697-707. PubMed ID: 21748812 [TBL] [Abstract][Full Text] [Related]
24. Graphene-like carbon nitride nanosheet as a novel sensing platform for electrochemical determination of tryptophan. Liu X; Zhang J; Di J; Long Y; Li W; Tu Y J Colloid Interface Sci; 2017 Nov; 505():964-972. PubMed ID: 28693097 [TBL] [Abstract][Full Text] [Related]
25. A novel lanreotide-encoded micelle system targets paclitaxel to the tumors with overexpression of somatostatin receptors. Zheng N; Dai W; Du W; Zhang H; Lei L; Zhang H; Wang X; Wang J; Zhang X; Gao J; Zhang Q Mol Pharm; 2012 May; 9(5):1175-88. PubMed ID: 22435704 [TBL] [Abstract][Full Text] [Related]
26. An electrochemical biosensor based on human serum albumin/graphene oxide/3-aminopropyltriethoxysilane modified ITO electrode for the enantioselective discrimination of D- and L-tryptophan. Zor E; Hatay Patir I; Bingol H; Ersoz M Biosens Bioelectron; 2013 Apr; 42():321-5. PubMed ID: 23208105 [TBL] [Abstract][Full Text] [Related]
27. Elucidation of the self-assembly pathway of lanreotide octapeptide into beta-sheet nanotubes: role of two stable intermediates. Pouget E; Fay N; Dujardin E; Jamin N; Berthault P; Perrin L; Pandit A; Rose T; Valéry C; Thomas D; Paternostre M; Artzner F J Am Chem Soc; 2010 Mar; 132(12):4230-41. PubMed ID: 20199027 [TBL] [Abstract][Full Text] [Related]
28. Investigation of L-Tryptophan Electrochemical Oxidation with a Graphene-Modified Electrode. Pogacean F; Varodi C; Coros M; Kacso I; Radu T; Cozar BI; Mirel V; Pruneanu S Biosensors (Basel); 2021 Jan; 11(2):. PubMed ID: 33525714 [TBL] [Abstract][Full Text] [Related]
29. Electrochemistry-enabled residue-specific modification of peptides and proteins. Bandyopadhyay A; Biswas P; Kundu SK; Sarkar R Org Biomol Chem; 2024 Feb; 22(6):1085-1101. PubMed ID: 38231504 [TBL] [Abstract][Full Text] [Related]
30. Lanreotide-conjugated PEG-DSPE micelles: an efficient nanocarrier targeting to somatostatin receptor positive tumors. Zheng N; Dai W; Zhang H; Wang X; Wang J; Zhang X; Wang K; Li J; Zhang Q J Drug Target; 2015 Jan; 23(1):67-78. PubMed ID: 25366085 [TBL] [Abstract][Full Text] [Related]
31. A facile approach to tryptophan derivatives for the total synthesis of argyrin analogues. Chen CH; Genapathy S; Fischer PM; Chan WC Org Biomol Chem; 2014 Dec; 12(48):9764-8. PubMed ID: 25355299 [TBL] [Abstract][Full Text] [Related]
32. Directing peptide crystallization through curvature control of nanotubes. Gobeaux F; Tarabout C; Fay N; Meriadec C; Ligeti M; Buisson DA; Cintrat JC; Artzner F; Paternostre M J Pept Sci; 2014 Jul; 20(7):508-16. PubMed ID: 24916887 [TBL] [Abstract][Full Text] [Related]
33. Design, Synthesis, and Evaluation of Amphiphilic Cyclic and Linear Peptides Composed of Hydrophobic and Positively-Charged Amino Acids as Antibacterial Agents. Riahifard N; Mozaffari S; Aldakhil T; Nunez F; Alshammari Q; Alshammari S; Yamaki J; Parang K; Tiwari RK Molecules; 2018 Oct; 23(10):. PubMed ID: 30360400 [TBL] [Abstract][Full Text] [Related]
34. Electrochemistry for the Chemoselective Modification of Peptides and Proteins. Mackay AS; Payne RJ; Malins LR J Am Chem Soc; 2022 Jan; 144(1):23-41. PubMed ID: 34968405 [TBL] [Abstract][Full Text] [Related]
35. Lanreotide and its Potential Applications in Polycystic Kidney and Liver Diseases. Sun L; Yu CY; Mackey LV; Coy DH Curr Top Med Chem; 2015; 16(2):133-40. PubMed ID: 26126910 [TBL] [Abstract][Full Text] [Related]
36. Triazolinedione protein modification: from an overlooked off-target effect to a tryptophan-based bioconjugation strategy. Decoene KW; Unal K; Staes A; Zwaenepoel O; Gettemans J; Gevaert K; Winne JM; Madder A Chem Sci; 2022 May; 13(18):5390-5397. PubMed ID: 35655564 [TBL] [Abstract][Full Text] [Related]
37. Somatostatin receptor 1 selective analogues: 4. Three-dimensional consensus structure by NMR. Grace CR; Durrer L; Koerber SC; Erchegyi J; Reubi JC; Rivier JE; Riek R J Med Chem; 2005 Jan; 48(2):523-33. PubMed ID: 15658866 [TBL] [Abstract][Full Text] [Related]
38. A novel approach for the selective determination of tryptophan in blood serum in the presence of tyrosine based on the electrochemical reduction of oxidation product of tryptophan formed in situ on graphite electrode. Özcan A; Şahin Y Biosens Bioelectron; 2012 Jan; 31(1):26-31. PubMed ID: 22071091 [TBL] [Abstract][Full Text] [Related]
39. C-H Olefination of Tryptophan Residues in Peptides: Control of Residue Selectivity and Peptide-Amino Acid Cross-linking. Terrey MJ; Holmes A; Perry CC; Cross WB Org Lett; 2019 Oct; 21(19):7902-7907. PubMed ID: 31524401 [TBL] [Abstract][Full Text] [Related]
40. Copper(II) phthalocyanine as an electrocatalytic electrode for cathodic detection of urinary tryptophan. Sunon P; Ngokpho B; Kaewket K; Wannapaiboon S; Ngamchuea K Analyst; 2024 May; 149(10):3041-3051. PubMed ID: 38625079 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]