These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 38896936)
1. Design, synthesis, antineoplastic activity of new pyrazolo[3,4-d]pyrimidine derivatives as dual CDK2/GSK3β kinase inhibitors; molecular docking study, and ADME prediction. Nemr MTM; Elshewy A; Ibrahim ML; El Kerdawy AM; Halim PA Bioorg Chem; 2024 Sep; 150():107566. PubMed ID: 38896936 [TBL] [Abstract][Full Text] [Related]
2. Novel oxindole/benzofuran hybrids as potential dual CDK2/GSK-3β inhibitors targeting breast cancer: design, synthesis, biological evaluation, and Eldehna WM; Al-Rashood ST; Al-Warhi T; Eskandrani RO; Alharbi A; El Kerdawy AM J Enzyme Inhib Med Chem; 2021 Dec; 36(1):270-285. PubMed ID: 33327806 [TBL] [Abstract][Full Text] [Related]
3. Novel Pyrazolo[3,4-d]pyrimidines as Potential Cytotoxic Agents: Design, Synthesis, Molecular Docking and CDK2 Inhibition. Maher M; Kassab AE; Zaher AF; Mahmoud Z Anticancer Agents Med Chem; 2019; 19(11):1368-1381. PubMed ID: 31038080 [TBL] [Abstract][Full Text] [Related]
4. Molecular docking approach for the design and synthesis of new pyrazolopyrimidine analogs of roscovitine as potential CDK2 inhibitors endowed with pronounced anticancer activity. Hamed OA; Abou-Elmagd El-Sayed N; Mahmoud WR; F Elmasry G Bioorg Chem; 2024 Jun; 147():107413. PubMed ID: 38696844 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of a new series of pyrazolo[1,5-a]pyrimidines as CDK2 inhibitors and anti-leukemia. Almehmadi SJ; Alsaedi AMR; Harras MF; Farghaly TA Bioorg Chem; 2021 Dec; 117():105431. PubMed ID: 34688130 [TBL] [Abstract][Full Text] [Related]
6. Design, Synthesis, biological Evaluation, and molecular docking studies of novel Pyrazolo[3,4-d]Pyrimidine derivative scaffolds as potent EGFR inhibitors and cell apoptosis inducers. Sherbiny FF; Bayoumi AH; El-Morsy AM; Sobhy M; Hagras M Bioorg Chem; 2021 Nov; 116():105325. PubMed ID: 34507234 [TBL] [Abstract][Full Text] [Related]
7. Design, synthesis and biological evaluation of certain CDK2 inhibitors based on pyrazole and pyrazolo[1,5-a] pyrimidine scaffold with apoptotic activity. Ali GME; Ibrahim DA; Elmetwali AM; Ismail NSM Bioorg Chem; 2019 May; 86():1-14. PubMed ID: 30682722 [TBL] [Abstract][Full Text] [Related]
8. Synthesis, EGFR Inhibition and Anti-cancer Activity of New 3,6-dimethyl-1-phenyl-4-(substituted-methoxy)pyrazolo[3,4-d] pyrimidine Derivatives. Bakr RB; Mehany ABM; Abdellatif KRA Anticancer Agents Med Chem; 2017; 17(10):1389-1400. PubMed ID: 28270084 [TBL] [Abstract][Full Text] [Related]
9. Synthesis, anticancer evaluation, and molecular docking studies of some novel 4,6-disubstituted pyrazolo[3,4-d]pyrimidines as cyclin-dependent kinase 2 (CDK2) inhibitors. Cherukupalli S; Chandrasekaran B; Kryštof V; Aleti RR; Sayyad N; Merugu SR; Kushwaha ND; Karpoormath R Bioorg Chem; 2018 Sep; 79():46-59. PubMed ID: 29753773 [TBL] [Abstract][Full Text] [Related]
10. Discovery of New Pyrazolopyridine, Furopyridine, and Pyridine Derivatives as CDK2 Inhibitors: Design, Synthesis, Docking Studies, and Anti-Proliferative Activity. Abdel-Rahman AA; Shaban AKF; Nassar IF; El-Kady DS; Ismail NSM; Mahmoud SF; Awad HM; El-Sayed WA Molecules; 2021 Jun; 26(13):. PubMed ID: 34206976 [TBL] [Abstract][Full Text] [Related]
11. Design, synthesis and biological evaluation of N-alkyl or aryl substituted isoindigo derivatives as potential dual cyclin-dependent kinase 2 (CDK2)/glycogen synthase kinase 3β (GSK-3β) phosphorylation inhibitors. Zhao P; Li Y; Gao G; Wang S; Yan Y; Zhan X; Liu Z; Mao Z; Chen S; Wang L Eur J Med Chem; 2014 Oct; 86():165-74. PubMed ID: 25151579 [TBL] [Abstract][Full Text] [Related]
13. Mechanistic selectivity investigation and 2D-QSAR study of some new antiproliferative pyrazoles and pyrazolopyridines as potential CDK2 inhibitors. Hassan GS; Georgey HH; Mohammed EZ; George RF; Mahmoud WR; Omar FA Eur J Med Chem; 2021 Jun; 218():113389. PubMed ID: 33784602 [TBL] [Abstract][Full Text] [Related]
15. New thieno[3,2-d]pyrimidine-based derivatives: Design, synthesis and biological evaluation as antiproliferative agents, EGFR and ARO inhibitors inducing apoptosis in breast cancer cells. Farghaly AM; AboulWafa OM; Baghdadi HH; Abd El Razik HA; Sedra SMY; Shamaa MM Bioorg Chem; 2021 Oct; 115():105208. PubMed ID: 34365057 [TBL] [Abstract][Full Text] [Related]
19. Design, synthesis and anticancer evaluation of 1H-pyrazolo[3,4-d]pyrimidine derivatives as potent EGFR Gaber AA; Bayoumi AH; El-Morsy AM; Sherbiny FF; Mehany ABM; Eissa IH Bioorg Chem; 2018 Oct; 80():375-395. PubMed ID: 29986185 [TBL] [Abstract][Full Text] [Related]
20. Design, synthesis, in vitro antiproliferative evaluation and GSK-3β kinase inhibition of a new series of pyrimidin-4-one based amide conjugates. Khan I; Tantray MA; Hamid H; Sarwar Alam M; Sharma K; Kesharwani P Bioorg Chem; 2022 Feb; 119():105512. PubMed ID: 34861627 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]