These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38897150)

  • 1. Identification of a G-protein coupled receptor-related gene signature through bioinformatics analysis to construct a risk model for ovarian cancer prognosis.
    Ma S; Li R; Li G; Wei M; Li B; Li Y; Ha C
    Comput Biol Med; 2024 Aug; 178():108747. PubMed ID: 38897150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of Ovarian Cancer Prognostic Model Based on the Investigation of Ferroptosis-Related lncRNA.
    Yang S; Ji J; Wang M; Nie J; Wang S
    Biomolecules; 2023 Feb; 13(2):. PubMed ID: 36830675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel gene signatures for prognosis prediction in ovarian cancer.
    Bao M; Zhang L; Hu Y
    J Cell Mol Med; 2020 Sep; 24(17):9972-9984. PubMed ID: 32666642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a glycolysis-related gene signature for survival prediction of ovarian cancer patients.
    Zhang D; Li Y; Yang S; Wang M; Yao J; Zheng Y; Deng Y; Li N; Wei B; Wu Y; Zhai Z; Dai Z; Kang H
    Cancer Med; 2021 Nov; 10(22):8222-8237. PubMed ID: 34609082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and verification of an immune-related gene pairs prognostic signature in ovarian cancer.
    Zhang B; Nie X; Miao X; Wang S; Li J; Wang S
    J Cell Mol Med; 2021 Mar; 25(6):2918-2930. PubMed ID: 33543590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment of an ovarian cancer omentum metastasis-related prognostic model by integrated analysis of scRNA-seq and bulk RNA-seq.
    Zhang D; Lu W; Cui S; Mei H; Wu X; Zhuo Z
    J Ovarian Res; 2022 Nov; 15(1):123. PubMed ID: 36424614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing of programmed cell death gene signature for predicting ovarian cancer prognosis and treatment response.
    Lian X; Liu B; Wang C; Wang S; Zhuang Y; Li X
    Front Endocrinol (Lausanne); 2023; 14():1182776. PubMed ID: 37342266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and Validation of an Immune-Related Prognostic Signature for Ovarian Cancer Based on Weighted Gene Coexpression Network Analysis.
    An Y; Yang Q
    Biomed Res Int; 2020; 2020():7594098. PubMed ID: 33381581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction and Validation of a Prognostic Gene-Based Model for Overall Survival Prediction in Hepatocellular Carcinoma Using an Integrated Statistical and Bioinformatic Approach.
    Dessie EY; Tu SJ; Chiang HS; Tsai JJP; Chang YS; Chang JG; Ng KL
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33562824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of a novel mRNA-signature prediction model for prognosis of bladder cancer based on a statistical analysis.
    Li J; Cao J; Li P; Yao Z; Deng R; Ying L; Tian J
    BMC Cancer; 2021 Jul; 21(1):858. PubMed ID: 34315402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying and Validating an Acidosis-Related Signature Associated with Prognosis and Tumor Immune Infiltration Characteristics in Pancreatic Carcinoma.
    Tang P; Qu W; Wu D; Chen S; Liu M; Chen W; Ai Q; Tang H; Zhou H
    J Immunol Res; 2021; 2021():3821055. PubMed ID: 34993253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pan-Cancer Analysis of Immune Cell Infiltration Identifies a Prognostic Immune-Cell Characteristic Score (ICCS) in Lung Adenocarcinoma.
    Zuo S; Wei M; Wang S; Dong J; Wei J
    Front Immunol; 2020; 11():1218. PubMed ID: 32714316
    [No Abstract]   [Full Text] [Related]  

  • 13. A prognostic model based on immune-related long noncoding RNAs for patients with epithelial ovarian cancer.
    Peng Y; Wang H; Huang Q; Wu J; Zhang M
    J Ovarian Res; 2022 Jan; 15(1):8. PubMed ID: 35031063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and validation of an immune gene-set based Prognostic signature in ovarian cancer.
    Shen S; Wang G; Zhang R; Zhao Y; Yu H; Wei Y; Chen F
    EBioMedicine; 2019 Feb; 40():318-326. PubMed ID: 30594555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel extrachromosomal circular DNA related genes signature for overall survival prediction in patients with ovarian cancer.
    Zhang Y; Dong K; Jia X; Du S; Wang D; Wang L; Qu H; Zhu S; Wang Y; Wang Z; Zhang S; Sun W; Fu S
    BMC Med Genomics; 2023 Jun; 16(1):140. PubMed ID: 37337170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive profiling of endocrine metabolism identifies a novel signature with robust predictive value in ovarian cancer.
    Yu D; Luo Y; Guo R; Ma F; Chang Y; Dang J
    J Gene Med; 2024 May; 26(5):e3686. PubMed ID: 38689382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel tumor mutational burden-based risk model predicts prognosis and correlates with immune infiltration in ovarian cancer.
    Wang H; Liu J; Yang J; Wang Z; Zhang Z; Peng J; Wang Y; Hong L
    Front Immunol; 2022; 13():943389. PubMed ID: 36003381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of the prognostic value of ferroptosis-related gene signature in breast cancer patients.
    Wang D; Wei G; Ma J; Cheng S; Jia L; Song X; Zhang M; Ju M; Wang L; Zhao L; Xin S
    BMC Cancer; 2021 May; 21(1):645. PubMed ID: 34059009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and validation of a seven m6A-related lncRNAs signature predicting prognosis of ovarian cancer.
    Song Y; Qu H
    BMC Cancer; 2022 Jun; 22(1):633. PubMed ID: 35676619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Risk Score Signature Consisting of Six Immune Genes Predicts Overall Survival in Patients with Lower-Grade Gliomas.
    Wu Y; Peng Z; Gu S; Wang H; Xiang W
    Comput Math Methods Med; 2022; 2022():2558548. PubMed ID: 35186111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.