These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 38897891)
1. Stability and antigenicity of Chlamydia muridarum major outer membrane protein antigen at body temperature. Russell FA; Trim L; Bryan E; Fisher MA; Leahy D; Harris JM; Hutmacher D; Dargaville TR; Beagley KW Vaccine; 2024 Oct; 42(23):126047. PubMed ID: 38897891 [TBL] [Abstract][Full Text] [Related]
2. A vaccine formulated with the major outer membrane protein can protect C3H/HeN, a highly susceptible strain of mice, from a Chlamydia muridarum genital challenge. Pal S; Tatarenkova OV; de la Maza LM Immunology; 2015 Nov; 146(3):432-43. PubMed ID: 26423798 [TBL] [Abstract][Full Text] [Related]
3. The cationic liposomal adjuvants CAF01 and CAF09 formulated with the major outer membrane protein elicit robust protection in mice against a Chlamydia muridarum respiratory challenge. Pal S; Tifrea DF; Follmann F; Andersen P; de la Maza LM Vaccine; 2017 Mar; 35(13):1705-1711. PubMed ID: 28238632 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of a multisubunit recombinant polymorphic membrane protein and major outer membrane protein T cell vaccine against Chlamydia muridarum genital infection in three strains of mice. Yu H; Karunakaran KP; Jiang X; Brunham RC Vaccine; 2014 Aug; 32(36):4672-80. PubMed ID: 24992718 [TBL] [Abstract][Full Text] [Related]
5. Liposome delivery of Chlamydia muridarum major outer membrane protein primes a Th1 response that protects against genital chlamydial infection in a mouse model. Hansen J; Jensen KT; Follmann F; Agger EM; Theisen M; Andersen P J Infect Dis; 2008 Sep; 198(5):758-67. PubMed ID: 18652549 [TBL] [Abstract][Full Text] [Related]
6. A vaccine formulated with a combination of TLR-2 and TLR-9 adjuvants and the recombinant major outer membrane protein elicits a robust immune response and significant protection against a Chlamydia muridarum challenge. Cheng C; Pal S; Tifrea D; Jia Z; de la Maza LM Microbes Infect; 2014 Mar; 16(3):244-52. PubMed ID: 24291713 [TBL] [Abstract][Full Text] [Related]
7. Encapsulation of Recombinant MOMP in Extended-Releasing PLGA 85:15 Nanoparticles Confer Protective Immunity Against a Sahu R; Dixit S; Verma R; Duncan SA; Smith L; Giambartolomei GH; Singh SR; Dennis VA Front Immunol; 2021; 12():660932. PubMed ID: 33936096 [TBL] [Abstract][Full Text] [Related]
8. Induction of cross-serovar protection against genital chlamydial infection by a targeted multisubunit vaccination approach. Li W; Guentzel MN; Seshu J; Zhong G; Murthy AK; Arulanandam BP Clin Vaccine Immunol; 2007 Dec; 14(12):1537-44. PubMed ID: 17942608 [TBL] [Abstract][Full Text] [Related]
9. Outer membrane proteins preferentially load MHC class II peptides: implications for a Chlamydia trachomatis T cell vaccine. Karunakaran KP; Yu H; Jiang X; Chan Q; Moon KM; Foster LJ; Brunham RC Vaccine; 2015 Apr; 33(18):2159-66. PubMed ID: 25738816 [TBL] [Abstract][Full Text] [Related]
10. Increased immunoaccessibility of MOMP epitopes in a vaccine formulated with amphipols may account for the very robust protection elicited against a vaginal challenge with Chlamydia muridarum. Tifrea DF; Pal S; Popot JL; Cocco MJ; de la Maza LM J Immunol; 2014 Jun; 192(11):5201-13. PubMed ID: 24778450 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the nine polymorphic membrane proteins of Chlamydia trachomatis for their ability to induce protective immune responses in mice against a C. muridarum challenge. Pal S; Favaroni A; Tifrea DF; Hanisch PT; Luczak SET; Hegemann JH; de la Maza LM Vaccine; 2017 May; 35(19):2543-2549. PubMed ID: 28385608 [TBL] [Abstract][Full Text] [Related]
12. Oral immunization with a novel lipid-based adjuvant protects against genital Chlamydia infection. Hickey DK; Aldwell FE; Beagley KW Vaccine; 2010 Feb; 28(7):1668-72. PubMed ID: 20026449 [TBL] [Abstract][Full Text] [Related]
13. Co-delivery of amphipol-conjugated adjuvant with antigen, and adjuvant combinations, enhance immune protection elicited by a membrane protein-based vaccine against a mucosal challenge with Chlamydia. Tifrea DF; Pal S; Le Bon C; Giusti F; Popot JL; Cocco MJ; Zoonens M; de la Maza LM Vaccine; 2018 Oct; 36(45):6640-6649. PubMed ID: 30293763 [TBL] [Abstract][Full Text] [Related]
14. Comparison of immune responses and protective efficacy of intranasal prime-boost immunization regimens using adenovirus-based and CpG/HH2 adjuvanted-subunit vaccines against genital Chlamydia muridarum infection. Brown TH; David J; Acosta-Ramirez E; Moore JM; Lee S; Zhong G; Hancock RE; Xing Z; Halperin SA; Wang J Vaccine; 2012 Jan; 30(2):350-60. PubMed ID: 22075089 [TBL] [Abstract][Full Text] [Related]
15. The Verma R; Sahu R; Dixit S; Duncan SA; Giambartolomei GH; Singh SR; Dennis VA Front Immunol; 2018; 9():2369. PubMed ID: 30374357 [TBL] [Abstract][Full Text] [Related]
16. Chlamydia muridarum T-cell antigens formulated with the adjuvant DDA/TDB induce immunity against infection that correlates with a high frequency of gamma interferon (IFN-gamma)/tumor necrosis factor alpha and IFN-gamma/interleukin-17 double-positive CD4+ T cells. Yu H; Jiang X; Shen C; Karunakaran KP; Jiang J; Rosin NL; Brunham RC Infect Immun; 2010 May; 78(5):2272-82. PubMed ID: 20231405 [TBL] [Abstract][Full Text] [Related]
17. Vaccination with the recombinant major outer membrane protein elicits antibodies to the constant domains and induces cross-serovar protection against intranasal challenge with Chlamydia trachomatis. Tifrea DF; Ralli-Jain P; Pal S; de la Maza LM Infect Immun; 2013 May; 81(5):1741-50. PubMed ID: 23478318 [TBL] [Abstract][Full Text] [Related]
18. Transcutaneous immunization with a novel lipid-based adjuvant protects against Chlamydia genital and respiratory infections. Hickey DK; Aldwell FE; Beagley KW Vaccine; 2009 Oct; 27(44):6217-25. PubMed ID: 19698810 [TBL] [Abstract][Full Text] [Related]
19. Intranasal vaccination with a secreted chlamydial protein enhances resolution of genital Chlamydia muridarum infection, protects against oviduct pathology, and is highly dependent upon endogenous gamma interferon production. Murthy AK; Chambers JP; Meier PA; Zhong G; Arulanandam BP Infect Immun; 2007 Feb; 75(2):666-76. PubMed ID: 17118987 [TBL] [Abstract][Full Text] [Related]
20. Recombinant expression of Chlamydia trachomatis major outer membrane protein in E. Coli outer membrane as a substrate for vaccine research. Wen Z; Boddicker MA; Kaufhold RM; Khandelwal P; Durr E; Qiu P; Lucas BJ; Nahas DD; Cook JC; Touch S; Skinner JM; Espeseth AS; Przysiecki CT; Zhang L BMC Microbiol; 2016 Jul; 16(1):165. PubMed ID: 27464881 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]