BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38898002)

  • 1. Light-evoked deformations in rod photoreceptors, pigment epithelium and subretinal space revealed by prolonged and multilayered optoretinography.
    Tan B; Li H; Zhuo Y; Han L; Mupparapu R; Nanni D; Barathi VA; Palanker D; Schmetterer L; Ling T
    Nat Commun; 2024 Jun; 15(1):5156. PubMed ID: 38898002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of intrinsic optical signals in the outer human retina using optical coherence tomography.
    Messner A; Aranha Dos Santos V; Stegmann H; Puchner S; Schmidl D; Leitgeb R; Schmetterer L; Werkmeister RM
    Ann N Y Acad Sci; 2022 Apr; 1510(1):145-157. PubMed ID: 34893981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. OCT imaging of rod mitochondrial respiration
    Berkowitz BA; Qian H
    Exp Biol Med (Maywood); 2021 Oct; 246(20):2151-2158. PubMed ID: 34024141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo optoretinography of phototransduction activation and energy metabolism in retinal photoreceptors.
    Ma G; Son T; Kim TH; Yao X
    J Biophotonics; 2021 May; 14(5):e202000462. PubMed ID: 33547871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic signal optoretinography of dark adaptation abnormality due to rod photoreceptor degeneration.
    Ding J; Kim TH; Ma G; Yao X
    Exp Biol Med (Maywood); 2024; 249():10024. PubMed ID: 38463390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ciliary neurotrophic factor (CNTF) protects retinal cone and rod photoreceptors by suppressing excessive formation of the visual pigments.
    Li S; Sato K; Gordon WC; Sendtner M; Bazan NG; Jin M
    J Biol Chem; 2018 Sep; 293(39):15256-15268. PubMed ID: 30115683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional intrinsic optical signal imaging for objective optoretinography of human photoreceptors.
    Son T; Kim TH; Ma G; Kim H; Yao X
    Exp Biol Med (Maywood); 2021 Mar; 246(6):639-643. PubMed ID: 33307802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Outer retina analysis by optical coherence tomography in cone-rod dystrophy patients.
    Lima LH; Sallum JM; Spaide RF
    Retina; 2013 Oct; 33(9):1877-80. PubMed ID: 23648999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noninvasive Electroretinographic Procedures for the Study of the Mouse Retina.
    Kinoshita J; Peachey NS
    Curr Protoc Mouse Biol; 2018 Mar; 8(1):1-16. PubMed ID: 30040236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flash responses of mouse rod photoreceptors in the isolated retina and corneal electroretinogram: comparison of gain and kinetics.
    Heikkinen H; Vinberg F; Pitkänen M; Kommonen B; Koskelainen A
    Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5653-64. PubMed ID: 22743325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Development of Mid-Wavelength Photoresponsivity in the Mouse Retina.
    Bonezzi PJ; Stabio ME; Renna JM
    Curr Eye Res; 2018 May; 43(5):666-673. PubMed ID: 29447486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional regulation of an outer retina hyporeflective band on optical coherence tomography images.
    Gao S; Li Y; Bissig D; Cohen ED; Podolsky RH; Childers KL; Vernon G; Chen S; Berkowitz BA; Qian H
    Sci Rep; 2021 May; 11(1):10260. PubMed ID: 33986362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional optical coherence tomography enables in vivo physiological assessment of retinal rod and cone photoreceptors.
    Zhang Q; Lu R; Wang B; Messinger JD; Curcio CA; Yao X
    Sci Rep; 2015 Apr; 5():9595. PubMed ID: 25901915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust cone-mediated signaling persists late into rod photoreceptor degeneration.
    Scalabrino ML; Thapa M; Chew LA; Zhang E; Xu J; Sampath AP; Chen J; Field GD
    Elife; 2022 Aug; 11():. PubMed ID: 36040015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transretinal ERG recordings from mouse retina: rod and cone photoresponses.
    Kolesnikov AV; Kefalov VJ
    J Vis Exp; 2012 Mar; (61):. PubMed ID: 22453300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rod Photoreceptors Avoid Saturation in Bright Light by the Movement of the G Protein Transducin.
    Frederiksen R; Morshedian A; Tripathy SA; Xu T; Travis GH; Fain GL; Sampath AP
    J Neurosci; 2021 Apr; 41(15):3320-3330. PubMed ID: 33593858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Physiology of the visual retinal signal: From phototransduction to the visual cycle].
    Salesse C
    J Fr Ophtalmol; 2017 Mar; 40(3):239-250. PubMed ID: 28318721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones.
    Korenbrot JI; Rebrik TI
    Adv Exp Med Biol; 2002; 514():179-203. PubMed ID: 12596922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast and slow light-induced changes in murine outer retina optical coherence tomography: complementary high spatial resolution functional biomarkers.
    Gao S; Zeng Y; Li Y; Cohen ED; Berkowitz BA; Qian H
    PNAS Nexus; 2022 Sep; 1(4):pgac208. PubMed ID: 36338188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cones in ageing and harsh environments: the neural economy hypothesis.
    Elsner AE; Papay JA; Johnston KD; Sawides L; de Castro A; King BJ; Jones DW; Clark CA; Gast TJ; Burns SA
    Ophthalmic Physiol Opt; 2020 Mar; 40(2):88-116. PubMed ID: 32017191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.