These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38898047)

  • 1. Adaptive urban traffic signal control based on enhanced deep reinforcement learning.
    Cai C; Wei M
    Sci Rep; 2024 Jun; 14(1):14116. PubMed ID: 38898047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Traffic Signal Control Using Hybrid Action Space Deep Reinforcement Learning.
    Bouktif S; Cheniki A; Ouni A
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33806123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-objective deep reinforcement learning approach for adaptive traffic signal control system with concurrent optimization of safety, efficiency, and decarbonization at intersections.
    Zhang G; Chang F; Jin J; Yang F; Huang H
    Accid Anal Prev; 2024 May; 199():107451. PubMed ID: 38367397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intelligent control of self-driving vehicles based on adaptive sampling supervised actor-critic and human driving experience.
    Zhang J; Ma N; Wu Z; Wang C; Yao Y
    Math Biosci Eng; 2024 May; 21(5):6077-6096. PubMed ID: 38872570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Agent Reinforcement Learning for Traffic Flow Management of Autonomous Vehicles.
    Mushtaq A; Haq IU; Sarwar MA; Khan A; Khalil W; Mughal MA
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OAS Deep Q-Learning-Based Fast and Smooth Control Method for Traffic Signal Transition in Urban Arterial Tidal Lanes.
    Dong L; Xie X; Lu J; Feng L; Zhang L
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biased Pressure: Cyclic Reinforcement Learning Model for Intelligent Traffic Signal Control.
    Ibrokhimov B; Kim YJ; Kang S
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A scalable approach to optimize traffic signal control with federated reinforcement learning.
    Bao J; Wu C; Lin Y; Zhong L; Chen X; Yin R
    Sci Rep; 2023 Nov; 13(1):19184. PubMed ID: 37932347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving efficiency of training a virtual treatment planner network via knowledge-guided deep reinforcement learning for intelligent automatic treatment planning of radiotherapy.
    Shen C; Chen L; Gonzalez Y; Jia X
    Med Phys; 2021 Apr; 48(4):1909-1920. PubMed ID: 33432646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep reinforcement learning for automated radiation adaptation in lung cancer.
    Tseng HH; Luo Y; Cui S; Chien JT; Ten Haken RK; Naqa IE
    Med Phys; 2017 Dec; 44(12):6690-6705. PubMed ID: 29034482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Network-Scale Traffic Signal Control via Multiagent Reinforcement Learning With Deep Spatiotemporal Attentive Network.
    Huang H; Hu Z; Lu Z; Wen X
    IEEE Trans Cybern; 2023 Jan; 53(1):262-274. PubMed ID: 34343099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An automatic driving trajectory planning approach in complex traffic scenarios based on integrated driver style inference and deep reinforcement learning.
    Liu Y; Diao S
    PLoS One; 2024; 19(1):e0297192. PubMed ID: 38271371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A traffic light control method based on multi-agent deep reinforcement learning algorithm.
    Liu D; Li L
    Sci Rep; 2023 Jun; 13(1):9396. PubMed ID: 37296308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Robot Path Planning Method Based on Deep Reinforcement Learning.
    Han H; Wang J; Kuang L; Han X; Xue H
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MARLens: Understanding Multi-Agent Reinforcement Learning for Traffic Signal Control Via Visual Analytics.
    Zhang Y; Zheng G; Liu Z; Li Q; Zeng H
    IEEE Trans Vis Comput Graph; 2024 Apr; PP():. PubMed ID: 38652611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects analysis of reward functions on reinforcement learning for traffic signal control.
    Lee H; Han Y; Kim Y; Kim YH
    PLoS One; 2022; 17(11):e0277813. PubMed ID: 36409713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AQMDRL: Automatic Quality of Service Architecture Based on Multistep Deep Reinforcement Learning in Software-Defined Networking.
    Chen J; Liao C; Wang Y; Jin L; Lu X; Xie X; Yao R
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36617026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attention based spatio-temporal graph convolutional network with focal loss for crash risk evaluation on urban road traffic network based on multi-source risks.
    Liu X; Lu J; Chen X; Fong YHC; Ma X; Zhang F
    Accid Anal Prev; 2023 Nov; 192():107262. PubMed ID: 37598458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-Scale Traffic Signal Control Using a Novel Multiagent Reinforcement Learning.
    Wang X; Ke L; Qiao Z; Chai X
    IEEE Trans Cybern; 2021 Jan; 51(1):174-187. PubMed ID: 32881705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Reinforcement Learning on Autonomous Driving Policy With Auxiliary Critic Network.
    Wu Y; Liao S; Liu X; Li Z; Lu R
    IEEE Trans Neural Netw Learn Syst; 2023 Jul; 34(7):3680-3690. PubMed ID: 34669579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.