These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 38898281)

  • 21. Principles and Methods in Computational Membrane Protein Design.
    Vorobieva AA
    J Mol Biol; 2021 Oct; 433(20):167154. PubMed ID: 34271008
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A generic framework for hierarchical de novo protein design.
    Harteveld Z; Bonet J; Rosset S; Yang C; Sesterhenn F; Correia BE
    Proc Natl Acad Sci U S A; 2022 Oct; 119(43):e2206111119. PubMed ID: 36252041
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Progress in elucidating the structural and dynamic character of G Protein-Coupled Receptor oligomers for use in drug discovery.
    Bortolato A; Mobarec JC; Provasi D; Filizola M
    Curr Pharm Des; 2009; 15(35):4017-25. PubMed ID: 20028319
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Packing of apolar side chains enables accurate design of highly stable membrane proteins.
    Mravic M; Thomaston JL; Tucker M; Solomon PE; Liu L; DeGrado WF
    Science; 2019 Mar; 363(6434):1418-1423. PubMed ID: 30923216
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Studies on soluble ectodomain proteins of relaxin (LGR7) and insulin 3 (LGR8) receptors.
    Yan Y; Cai J; Fu P; Layfield S; Ferraro T; Kumagai J; Sudo S; Tang JG; Giannakis E; Tregear GW; Wade JD; Bathgate RA
    Ann N Y Acad Sci; 2005 May; 1041():35-9. PubMed ID: 15956685
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solvent and lipid accessibility prediction as a basis for model quality assessment in soluble and membrane proteins.
    Phatak M; Adamczak R; Cao B; Wagner M; Meller J
    Curr Protein Pept Sci; 2011 Sep; 12(6):563-73. PubMed ID: 21787302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The human LGR7 low-density lipoprotein class A module requires calcium for structure.
    Hopkins EJ; Bathgate RA; Gooley PR
    Ann N Y Acad Sci; 2005 May; 1041():27-34. PubMed ID: 15956684
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reconstitution of Membrane Proteins into Platforms Suitable for Biophysical and Structural Analyses.
    Schmidpeter PAM; Sukomon N; Nimigean CM
    Methods Mol Biol; 2020; 2127():191-205. PubMed ID: 32112324
    [TBL] [Abstract][Full Text] [Related]  

  • 29.
    Korendovych IV; DeGrado WF
    Q Rev Biophys; 2020 Feb; 53():e3. PubMed ID: 32041676
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Folding Membrane Proteins by Deep Transfer Learning.
    Wang S; Li Z; Yu Y; Xu J
    Cell Syst; 2017 Sep; 5(3):202-211.e3. PubMed ID: 28957654
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Artificial membrane-like environments for in vitro studies of purified G-protein coupled receptors.
    Serebryany E; Zhu GA; Yan EC
    Biochim Biophys Acta; 2012 Feb; 1818(2):225-33. PubMed ID: 21851807
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A topological and conformational stability alphabet for multipass membrane proteins.
    Feng X; Barth P
    Nat Chem Biol; 2016 Mar; 12(3):167-73. PubMed ID: 26780406
    [TBL] [Abstract][Full Text] [Related]  

  • 33. IMPROvER: the Integral Membrane Protein Stability Selector.
    Harborne SPD; Strauss J; Boakes JC; Wright DL; Henderson JG; Boivineau J; Jaakola VP; Goldman A
    Sci Rep; 2020 Sep; 10(1):15165. PubMed ID: 32938971
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Folding of newly translated membrane protein CCR5 is assisted by the chaperonin GroEL-GroES.
    Chi H; Wang X; Li J; Ren H; Huang F
    Sci Rep; 2015 Nov; 5():17037. PubMed ID: 26585937
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep learning-driven insights into super protein complexes for outer membrane protein biogenesis in bacteria.
    Gao M; Nakajima An D; Skolnick J
    Elife; 2022 Dec; 11():. PubMed ID: 36576775
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissecting the stability determinants of a challenging de novo protein fold using massively parallel design and experimentation.
    Kim TE; Tsuboyama K; Houliston S; Martell CM; Phoumyvong CM; Lemak A; Haddox HK; Arrowsmith CH; Rocklin GJ
    Proc Natl Acad Sci U S A; 2022 Oct; 119(41):e2122676119. PubMed ID: 36191185
    [TBL] [Abstract][Full Text] [Related]  

  • 37. De novo protein design by inversion of the AlphaFold structure prediction network.
    Goverde CA; Wolf B; Khakzad H; Rosset S; Correia BE
    Protein Sci; 2023 Jun; 32(6):e4653. PubMed ID: 37165539
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solution NMR studies of polytopic α-helical membrane proteins.
    Nietlispach D; Gautier A
    Curr Opin Struct Biol; 2011 Aug; 21(4):497-508. PubMed ID: 21775128
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Whole proteome identification of plant candidate G-protein coupled receptors in Arabidopsis, rice, and poplar: computational prediction and in-vivo protein coupling.
    Gookin TE; Kim J; Assmann SM
    Genome Biol; 2008; 9(7):R120. PubMed ID: 18671868
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Global analysis of protein folding using massively parallel design, synthesis, and testing.
    Rocklin GJ; Chidyausiku TM; Goreshnik I; Ford A; Houliston S; Lemak A; Carter L; Ravichandran R; Mulligan VK; Chevalier A; Arrowsmith CH; Baker D
    Science; 2017 Jul; 357(6347):168-175. PubMed ID: 28706065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.