These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 38898346)
1. Long-term pollen season trends of Fraxinus (ash), Quercus (oak) and Ambrosia artemisiifolia (ragweed) as indicators of anthropogenic climate change impact. Ščevková J; Štefániková N; Dušička J; Lafférsová J; Zahradníková E Environ Sci Pollut Res Int; 2024 Jun; 31(30):43238-43248. PubMed ID: 38898346 [TBL] [Abstract][Full Text] [Related]
2. Pollen of common ragweed (Ambrosia artemisiifolia L.): Illumina-based de novo sequencing and differential transcript expression upon elevated NO Zhao F; Durner J; Winkler JB; Traidl-Hoffmann C; Strom TM; Ernst D; Frank U Environ Pollut; 2017 May; 224():503-514. PubMed ID: 28284545 [TBL] [Abstract][Full Text] [Related]
3. Effect of meteorological factors on Betula, Fraxinus and Quercus pollen concentrations in the atmosphere of Lublin and Szczecin, Poland. Weryszko-Chmielewska E; Puc M; Piotrowska K Ann Agric Environ Med; 2006; 13(2):243-9. PubMed ID: 17195996 [TBL] [Abstract][Full Text] [Related]
4. Expansion and aerobiology of Ambrosia artemisiifolia L. in Slovakia. Hrabovský M; Ščevková J; Mičieta K; Lafférsová J; Dušička J Ann Agric Environ Med; 2016; 23(1):64-70. PubMed ID: 27007519 [TBL] [Abstract][Full Text] [Related]
5. Long-term trends and influence of climate and land-use changes on pollen profiles of a Mediterranean oak forest. López-Orozco R; García-Mozo H; Oteros J; Galán C Sci Total Environ; 2023 Nov; 897():165400. PubMed ID: 37423282 [TBL] [Abstract][Full Text] [Related]
6. Ragweed is in the Air: Montagnani C; Gentili R; Citterio S Curr Protein Pept Sci; 2023; 24(1):98-111. PubMed ID: 36411556 [TBL] [Abstract][Full Text] [Related]
7. Climate change effect on Betula (birch) and Quercus (oak) pollen seasons in the United States. Zhang Y; Bielory L; Georgopoulos PG Int J Biometeorol; 2014 Jul; 58(5):909-19. PubMed ID: 23793955 [TBL] [Abstract][Full Text] [Related]
8. Quercus pollen season dynamics in the Iberian peninsula: response to meteorological parameters and possible consequences of climate change. Garcia-Mozo H; Galan C; Jato V; Belmonte J; de la Guardia C; Fernandez D; Gutierrez M; Aira M; Roure J; Ruiz L; Trigo M; Dominguez-Vilches E Ann Agric Environ Med; 2006; 13(2):209-24. PubMed ID: 17195993 [TBL] [Abstract][Full Text] [Related]
9. Variation in ragweed (Ambrosia artemisiifolia L.) pollen concentration in central Croatia, 2002-2003. Peternel R; Culig J; Srnec L; Mitić B; Vukusić I; Hrga I Ann Agric Environ Med; 2005; 12(1):11-6. PubMed ID: 16028859 [TBL] [Abstract][Full Text] [Related]
10. Aerobiological monitoring and mapping of Ambrosia plants in the province of Parma (northern Italy, southern Po valley), a useful tool for targeted preventive measures. Albertini R; Ugolotti M; Ghillani L; Adorni M; Vitali P; Signorelli C; Pasquarella C Ann Ig; 2017; 29(6):515-528. PubMed ID: 29048450 [TBL] [Abstract][Full Text] [Related]
11. The influence of temperature, relative humidity and rainfall on the occurrence of pollen allergens (Betula, Poaceae, Ambrosia artemisiifolia) in the atmosphere of Bratislava (Slovakia). Bartková-Scevková J Int J Biometeorol; 2003 Sep; 48(1):1-5. PubMed ID: 12690548 [TBL] [Abstract][Full Text] [Related]
12. Common ragweed (Ambrosia artemisiifolia L.): allergenicity and molecular characterization of pollen after plant exposure to elevated NO2. Zhao F; Elkelish A; Durner J; Lindermayr C; Winkler JB; Ruёff F; Behrendt H; Traidl-Hoffmann C; Holzinger A; Kofler W; Braun P; von Toerne C; Hauck SM; Ernst D; Frank U Plant Cell Environ; 2016 Jan; 39(1):147-64. PubMed ID: 26177592 [TBL] [Abstract][Full Text] [Related]
13. Pollen season trends as markers of climate change impact: Betula, Quercus and Poaceae. Adams-Groom B; Selby K; Derrett S; Frisk CA; Pashley CH; Satchwell J; King D; McKenzie G; Neilson R Sci Total Environ; 2022 Jul; 831():154882. PubMed ID: 35364159 [TBL] [Abstract][Full Text] [Related]
14. Mesoscale atmospheric transport of ragweed pollen allergens from infected to uninfected areas. Grewling Ł; Bogawski P; Jenerowicz D; Czarnecka-Operacz M; Šikoparija B; Skjøth CA; Smith M Int J Biometeorol; 2016 Oct; 60(10):1493-1500. PubMed ID: 26842368 [TBL] [Abstract][Full Text] [Related]
15. Assessment of Quercus flowering trends in NW Spain. Jato V; Rodríguez-Rajo FJ; Fernandez-González M; Aira MJ Int J Biometeorol; 2015 May; 59(5):517-31. PubMed ID: 25108375 [TBL] [Abstract][Full Text] [Related]
16. Climate sensitivity of allergenic taxa in Central Europe associated with new climate change related forces. Deák AJ; Makra L; Matyasovszky I; Csépe Z; Muladi B Sci Total Environ; 2013 Jan; 442():36-47. PubMed ID: 23178762 [TBL] [Abstract][Full Text] [Related]
17. PLANT AEROALLERGENS IN TWO MAJOR CITIES OF GEORGIA - TBILISI AND KUTAISI. Abramidze T; Gotua M; Chikhelidze N; Cheishvili T; Gamkrelidze A Georgian Med News; 2017 Mar; (264):75-80. PubMed ID: 28480855 [TBL] [Abstract][Full Text] [Related]
18. Co-occurrence of Artemisia and Ambrosia pollen seasons against the background of the synoptic situations in Poland. Stępalska D; Myszkowska D; Katarzyna L; Katarzyna P; Katarzyna B; Kazimiera C; Łukasz G; Idalia K; Barbara MW; Małgorzata M; Małgorzata N; Krystyna PW; Małgorzata P; Elżbieta WC Int J Biometeorol; 2017 Apr; 61(4):747-760. PubMed ID: 27722901 [TBL] [Abstract][Full Text] [Related]
19. Analysis of Fraxinus pollen seasons and forecast models based on meteorological factors. Kubik-Komar A; Piotrowska-Weryszko K; Weryszko-Chmielewska E; Kaszewski BM Ann Agric Environ Med; 2018 Jun; 25(2):285-291. PubMed ID: 29936810 [TBL] [Abstract][Full Text] [Related]
20. Long-Term Pollen Monitoring in the Benelux: Evaluation of Allergenic Pollen Levels and Temporal Variations of Pollen Seasons. de Weger LA; Bruffaerts N; Koenders MMJF; Verstraeten WW; Delcloo AW; Hentges P; Hentges F Front Allergy; 2021; 2():676176. PubMed ID: 35387026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]